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Abstract

In recent years probabilistic knowledge-based systems such as Bayesian net-

works and influence diagrams have come to the fore as a means of represent-

ing and reasoning about complex real-world situations. Although some of the

probabilities used in these models may be obtained statistically, where this is

impossible or simply inconvenient, modellers rely on expert knowledge. Ex-

perts, however, typically find it difficult to specify exact probabilities and con-

ventional representations cannot reflect any uncertainty they may have. In

this way, the use of conventional point probabilities can damage the accuracy,

robustness and interpretability of acquired models. With these concerns in

mind, psychometric researchers have demonstrated that fuzzy numbers are

good candidates for representing the inherent vagueness of probability esti-

mates, and the fuzzy community has responded with two distinct theories of

fuzzy probabilities.

This thesis, however, identifies formal and presentational problems with these

theories which render them unable to represent even very simple scenarios.

This analysis leads to the development of a novel and intuitively appealing

alternative - a theory of linguistic probabilities patterned after the standard Kol-

mogorov axioms of probability theory. Since fuzzy numbers lack algebraic

inverses, the resulting theory is weaker than, but generalizes its classical coun-

terpart. Nevertheless, it is demonstrated that analogues for classical proba-

bilistic concepts such as conditional probability and random variables can be

constructed. In the classical theory, representation theorems mean that most of

the time the distinction between mass/density distributions and probability

measures can be ignored. Similar results are proven for linguistic probabili-
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ties.

From these results it is shown that directed acyclic graphs annotated with lin-

guistic probabilities (under certain identified conditions) represent systems of

linguistic random variables. It is then demonstrated these linguistic Bayesian

networks can utilize adapted best-of-breed Bayesian network algorithms (junc-

tion tree based inference and Bayes’ ball irrelevancy calculation). These algo-

rithms are implemented in ARBOR, an interactive design, editing and querying

tool for linguistic Bayesian networks.

To explore the applications of these techniques, a realistic example drawn from

the domain of forensic statistics is developed. In this domain the knowledge

engineering problems cited above are especially pronounced and expert esti-

mates are commonplace. Moreover, robust conclusions are of unusually crit-

ical importance. An analysis of the resulting linguistic Bayesian network for

assessing evidential support in glass-transfer scenarios highlights the potential

utility of the approach.
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Chapter 1

Introduction

The research documented in this thesis represents an attempt to answer a set of

linked questions about the mathematical and computational aspects of mod-

elling probabilities as fuzzy quantities. The motivations for this study are

sketched in the following section. This feeds into the set of specific research

questions that follows. The chapter closes with an outline of the remainder of

the thesis.

1.1 Motivation

Many different types of uncertainty can be found in the sorts of information in-

telligent systems must process and it is not uncommon to find several of these

represented in a single item. So, for example, in constructing a knowledge-

based system for industrial fault diagnosis, an expert might supply that if the

water pressure is well above tolerance levels, then it is extremely likely that

1



Chapter 1. Introduction 2

the output valve will fail. Here, the meaning of the term “extremely likely”

combines elements of both fuzzy and probabilistic uncertainty.

The use of fuzzy sets to model every-day descriptions such as “John is tall” is

no doubt familiar. The idea behind the set of theories sharing the name “fuzzy

probability” is that imprecise linguistic characterisations of probabilistic un-

certainty can be treated in an analogous way. The goal then, put simply, is to

develop a principled approach to statements such as

It is quite likely to rain tomorrow. (1.1)

A possible objection at this stage is that (1.1) is hopelessly uninformative. If

(probabilistic) information about the next day’s weather is crucial to a system’s

successful operation there are surely better ways to obtain it. In short, why

bother attempting to utilize such woefully low-grade information? The an-

swer, of course, is the standard argument for “computing with words” (Zadeh,

1996): whilst gold-standard numerical information may be available about to-

morrow’s weather, there are probabilistic assessments which are too difficult,

expensive or simply impossible to obtain with such precision.

For example, consider the questions: Will there be artificial intelligence in 10

years? 100 years? 1000 years? Consultation with an expert is unlikely to yield

much beyond vague probabilistic statements like “It is extremely unlikely that

we will have (true) artificial intelligence in ten years time.” But if such in-

formation is to be used within the framework of classical probability theory,

numerical estimates of the probabilities of interest are required.

In such cases and indeed many that are less speculative, the difficulty of ob-

taining point estimates of probability has been widely reported (Kahneman
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et al., 1985; Zimmer, 1983). Whilst an expert may be willing to assert that it is

extremely likely that there will be intelligent constructs this time next millen-

nium it would seem odd, a loss of academic integrity even, to state that the

probability of that occurrence is 0.93. Indeed, a committee of the U.S. National

Research Council (National Research Council Governing Board Commitee on

the Assessment of Risk, 1981;Wallsten et al., 1986a) has written that there is “an

important responsibility not to use numbers, which convey the impression of

precision, when the understanding of relationships is indeed less secure. Thus

whilst quantitative risk assessment facilitates comparison, such comparison

may be illusory or misleading if the use of precise numbers is unjustified.”

Subjective probability assessments are often the product of countless barely

articulate intuitions and are often best expressed in words. It is misleading to

seek to express them with numerical precision.

1.2 The case for fuzzy probabilities

Responding to these difficulties, researchers have attempted to obtain point

values for probabilistic terms experimentally. The general form of these inves-

tigations is to present subjects with probabilistic terms requesting a numeri-

cal translation. It is hardly surprising that studies such as Budescu and Wall-

sten (1985) have concluded that point estimates of probability terms vary too

greatly between subjects and exhibit too great an overlap to be useful for many

problems.

Attempts to model probabilistic terms using fuzzy sets, however, have proven

more successful. For example, a relatively sophisticated experimental method



Chapter 1. Introduction 4

for eliciting fuzzy models of probabilistic terms has been developed by Wall-

sten et al. (1986a) and the inter-subjective stability of generated terms has been

examined with promising results. In addition, Zimmer (1986) has reported

that verbal expressions of probabilistic uncertainty were “more accurate” than

numerical values in estimating the frequency of multiple attributes by exper-

imental studies. Whilst there are outstanding problems such as context sensi-

tivity with the fuzzy approach to modelling probabilistic terms, these psycho-

metric studies are unanimous in preferring it to numerical estimates.

1.3 Problem statement

The research presented in this thesis represents an attempt to answer the ques-

tion: what form should a theory of fuzzy probabilities take?

It does not seek to offer a view on the philosophical aspects, viability or utility

of representing vague concepts in general using fuzzy sets, nor on the applica-

tion of fuzzy arithmetic in particular to modelling vague probabilities. Instead

it is hoped that the reader will evaluate the present work in the light of the

psychometric studies outlined above, and on the assumption that these are

sensible and useful things to do.

This is not, then, an experimental study – although suggestions for support-

ing experiments will be made from time to time. Instead it has the form of

a systematic exploration of the mathematical, computational and aspects of a

particular combination of probability theory and fuzzy logic.

This perhaps complicates evaluation. Artificial Intelligence – understood as
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the attempt to coax machines into exhibiting intelligent behaviour – is funda-

mentally an experimental discipline. Nevertheless, there is a long tradition

of more analytic work in AI that proposes an abstract theory developed for

a set of identified reasons and where the immanent experimental programme

is assumed or deferred. Indeed, Zadeh’s initial forays into fuzzy logic which

provide significant inspiration for the present study, have this character.

The test of quality for such work must be whether the concepts and methods

(and their computational counterparts of representations and algorithms) that

are introduced are sufficiently novel, coherent, interesting and potentially use-

ful. The critique of existing work demonstrates that the theory of linguistic

probabilities is novel and non-trivial – others have walked a similar path but

have stumbled on it.

Similarly, it is hoped, the coherence and richness of the theory should be evi-

dent from the relative ease with which sophisticated concepts such as random

variables and conditional probability can be adapted. Finally, the potential

utility is suggested by the development of linguistic probability networks as a

scheme for representing and reasoning about multivariate linguistic probabil-

ity distributions and their application to a realistic case study.

1.4 Overview

The chapter following this brief introduction presents a summary of the key

concepts and notation that constitute the technical background of the present

work. Although much of the material here will be familiar to the reader the
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notation and manner of presentation are significant: some of the notation, par-

ticularly that associated with fuzzy numbers and their arithmetic, where there

are not yet universally accepted conventions, has been invented or adapted

for the present purposes; and the way in which classical probability theory

is introduced intended to prefigure the sequence and structure of the theory

developed here.

Chapter 3 examines a number of related pieces of research which also seek to

hybridize fuzzy logic and probability theory. Because of the breadth and some-

what inter-disciplinary nature of this area of research there have been few sys-

tematic reviews. Chapter 3 attempts to a certain extant to address this deficit.

Most of the text, however, is given over to a discussion and original critique of

what are identified as the two existing theories of “fuzzy probabilities”.

In response to these criticisms, Chapter 4 develops the core theory of linguistic

probabilities. Unlike its two predecessors in interest, the theory is explicitly

patterned after the standard measure-theoretic axioms of contemporary prob-

ability theory. It is shown that linguistic probability measures, like their clas-

sical counterparts, are monotonic and continuous. Analogues for the classical

concepts of conditional probability, independence and discrete and continuous

random variables are also introduced and discussed.

Chapter 5 develops the theory into a computational application by examining

how linguistic probabilities could be used in a Bayesian-network-like graphi-

cal knowledge representation. It is shown that the resulting representation is

consistent, if not (in a certain sense, to be defined) complete.

Classical Bayesian networks are increasingly used to assess the strength of ev-
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idential support provided by forensic evidence. Chapter 6, introduces this ap-

plication area and then, through a detailed case study, shows how linguistic

Bayesian networks might be used to address some deficiencies in the current

approach.

Finally, chapter 7 draws matters to a close. The chief claims and achievements

of the work are summarized and directions for future research are sketched in

some detail.



Chapter 2

Background

This chapter introduces and discusses the basic mathematical concepts that

underlie the remainder of the work. Naturally, it is anticipated that some of

the technical material will be familiar to the reader. In these cases, however

a brief rehearsal serves both to introduce the requisite notation, and where

there may be several alternatives in the literature, to clarify precisely which

definitions are in operation.

The chapter is divided into three main sections. First the basic principles of

fuzzy logic and fuzzy set theory are introduced against a background of clas-

sical and non-standard logic. These elementary fuzzy concepts are then used

to define the concept of a fuzzy number, the chosen model for fuzzy probabil-

ities. Some auxiliary results regarding the (natural) algebra and topology of

fuzzy numbers are presented which are central to the development of linguis-

tic probability theory.

The second section present a brief overview of the standard Kolmogorov ax-

8
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iomatization of (classical) probability theory and sets the familiar entities of

probability theory, in particular conditional probability and random variables

into this context.

The third and final section presents a brief overview of the theoretical under-

pinnings of (classical) Bayesian networks. The structure of these section last

two sections is mirrored by chapters 4 and 5 respectively, which seek to emu-

late the constructions they present in the revised axiomatization.

2.1 Fuzzy logic

One key section of Aristotle’s Metaphysics, a work that has profoundly influ-

enced the modern (realist) concept of truth, formal logic and linguistic philos-

ophy, states that “. . . the understanding either affirms or denies every object of

understanding or thought. . .whenever it is right or wrong. When, in asserting

or denying, it combines the predicates in one way, it is right; when in the other,

it is wrong.”

Interpretative difficulties aside, this short excerpt illustrates two key features

of Aristotle’s thought. First, all statements are (understood as) either true or

false. Second, this understanding is either correct or incorrect in virtue of

the world. Setting aside the metaphysical/epistemological aspects this can

be glossed as

Every statement is either true or false. (2.1)

In contemporary philosophy of logic this has become known as the Principle

of Bivalence.
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The principle is meta-logical in that it cannot be formulated within logic itself.

However two formulations are available within logic namely the law of non-

contradiction

|= ¬(φ∧¬φ) (2.2)

and the law of the excluded middle (or tertium non datur)

|= φ∨¬φ (2.3)

These differ from 2.1 in that they do not necessarily assert that P has a truth

value.

In classical logic these two laws hold and it is therefore usually said to sat-

isfy 2.1. But this has been the subject of controversy. So, for example, from a

philosophical point of view it is not clear that a prospective statement, such

as “Mary will go to the shops tomorrow” has (at this moment) any definite

truth value. A similar difficulty is presented by intensional contexts. So, for

example, one may believe “either John is having an affair or John is not having

an affair” without believing either disjunct separately. Such modal statements

have suggested to some researchers that 2.1 may be rejected while 2.3 and 2.2

are retained.

An opposite area of difficulty is highlighted by intuitionistic (constructive)

logic, which equates truth and provenness. Gödel’s Theorem (Gödel, 1931)

demonstrates that for any sufficiently strong, consistent axiomatic system, there

is a simple mathematical statement, G, that is true, but neither provable nor

refutable. Thus intuitionistic logic rejects 2.3, because G∨ ¬G can only be

proven by the (impossible) proof or refutation of G. Interestingly, however,

2.2 is retained as a trivial consequence of the semantics of negation, namely
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that ¬P can only be derived from a proof that P leads to a contradiction, but in

the case of 2.2, the P in question is itself the very definition of a contradiction!

Another strand in the philosophy of logic has been to reject 2.1 by the addi-

tion of one or more intermediate truth values. So, for example, in order to

address epistemic concerns one might add an “undecided” truth value. The

classical truth functional operators are then extended to encompass this new

value. Very many different trivalent logics have been proposed, prompting

the MathWorld encyclopaedia to remark (with jocular precision) that “there

are 3072 such logics”. Nevertheless, such distinguished philosophers such as

Emile Post and Charles Pierce may be numbered amongst this authors of this

vast body of research.

Nowadays, trivalent logics are viewed as just a particular class amongst many

multi-valued logics. Much pioneering work in this area was undertaken by

the Polish mathematician and philosopher, Jan Łukasiewicz and however this

work largely remained within a logicomathematical niche until, in the mid

1960s Lotfi Zadeh proposed a systematic study of what he termed “fuzzy

logic” as a means to model the vagueness of natural language.

2.1.1 Fuzzy logic in AI

Zadeh was extremely successful in demonstrating the practical utility of the

fuzzy approaches to knowledge representation and (equally important) in per-

suading other researchers to back the programme of work he outlined.

Control techniques utilising meaningful natural language rule sets to implic-
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itly generate sophisticated control surfaces were an early and continuing area

of success. Unusually for an Artificial Intelligence technique, fuzzy logic saw

rapid adoption outside academia and a host of commercial and domestic ap-

plications.

Nevertheless, Zadeh has, from the outset, maintained that the fuzzy approach

is a generic knowledge representation strategy and that “fuzzification” is a

process which can be applied to any mathematical theory. This idea has been

taken upwith gusto by a host of researchers and has resulted in awide-ranging

but systematic effort to fuzzify various areas of mathematics. The fruit of these

labours is reflected in Section 2.1.4 and following.

2.1.2 Fuzzy sets

This section introduces the basic formal concepts and notation associated with

fuzzy sets.

Definition 2.1.1 (Fuzzy set). Given a universe of discourse, D, a fuzzy set, A, in

D is determined by its membership function

µA : D → [0,1] (2.4)

For any d ∈ D, µA(d) is termed d’s degree of membership in A.

The force of this definition is that two fuzzy sets are equal if they have the same

membership function. An alternative representation of fuzzy sets is through

their alphacuts. If a fuzzy set is thought of as a landscape (in a three dimen-

sional Venn diagram) then its alphacuts correspond to its contours.

Definition 2.1.2 (Alphacut). Given a fuzzy set, A, the alphacut of A at α ∈ [0,1]
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is the set of elements with membership degree at least α i.e.

A⇂α = {x∈ D : µA(x) ≥ α} (2.5)

That alphacuts andmembership functions are equivalent andmutually-determining

representations is a trivial consequence of their definitions.

Theorem 2.1.3 (Decomposition). Given fuzzy sets A and B with universe of dis-

course D, A = B if and only if A⇂α = B⇂α for all α ∈ [0,1]

Proof. If µA = µB then for all α ∈ [0,1]

A⇂α = {x∈ D : µA(x) ≥ α} = {x∈ D : µB(x) ≥ α} = B⇂α (2.6)

Now suppose A⇂α = B⇂α for all α ∈ [0,1]. If µA(d) < µB(d) for some d ∈ D then

d ∈ B⇂µB(d), but d /∈ A⇂µB(d), which is a contradiction. By symmetry, µA = µB.

2.1.3 Triangular norms

Triangular norms were introduced by Schwiezer and Sklar (1963) as a model

of distances in probabilistic spaces. In fuzzy logic they are analogues for the

Boolean “and” truth functor.

Definition 2.1.4 (Triangular norm). Amapping T : [0,1]2 → [0,1] is a triangular

norm if it satisfies the following properties,

a) (Symmetry) for all x,y∈ [0,1], T(x,y) = T(y,x)

b) (Associativity) for all x,y,z∈ [0,1], T(x,T(y,z)) = T(T(x,y),z)

c) (Monotonicity) if x≤ x′,y≤ y′, T(x,y) ≤ T(x′,y′)

d) (Identity) for all x∈ [0,1], T(x,1) = x
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Triangular norms are frequently termed “t-norms”.

T-norms generalise the Boolean “and” operation. The Boolean “or” operation

is generalized by t-conorms.

Definition 2.1.5 (Triangular co-norm). A mapping S: [0,1]2 → [0,1] is a trian-

gular co-norm if and only if

T(x,y) = 1−S(1−x,1−y) (2.7)

is a triangular norm. Triangular co-norms are frequently termed “s-norms”.

There are an infinite number of t- and s-norm pairs. Some examples are pre-

sented in Table 2.1. The choice of t-norm is a somewhat vexed issue. For practi-

cal applications one approach has been to treat the selection of truth-functional

operator as an optimization problem in its own right. For example, Song et al.

(2003) describe a parameterized family of operators and a learning algorithm

for choosing the optimal parameter given a set of training data.

Historically, min and maxwere Zadeh’s choice of truth functors and these re-

main, for the author at least, the most intuitively appealing. In addition gen-

eralised t-norm notation is rather cumbersome. Finally, min and max (and

their infinitistic counterparts inf and sup) are uniquely well-suited to the de-

velopment of fuzzy sets of numbers as they generalise immediately to arbi-

trary numbers of operands. For these reasons, the remainder of this text will

utilise them as concrete truth-functional operators, but the reader should bear

in mind that most of what follows hold regardless of the choice of t-norm.
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t-norm s-norm

Zadeh TZ(x,y) = min(x,y) SZ(x,y) = max(x,y)

Łukasicwixz TL(x,y) = max(x+y−1,0) SL(x,y) = min(x+y,1)

Product/probabilistic TP(x,y) = xy SP(x,y) = x+y−xy

Weak TW(x,y) =















min(x,y) max(x,y) = 1,

0 otherwise

S(x,y) =















max(x,y) min(x,y) = 0,

1 otherwise

Yager family Y(x,y, p) = 1−min(1, p
√

(1−x)p+(1−y)p) SY(x,y, p) = min(1, p
√

xp +yp) for p > 0

Dubois and Prade family TD(x,y,α) = xy
max(x,y,α)

SD(x,y,α) = 1−TD(1−x,1−y,α) for α ∈ (0,1)

Frank family TF(x,y,λ) =















































TZ(x,y) λ = 0,

TP(x,y) λ = 1,

TL(x,y) λ = ∞,

1− logλ{1+ (λa−1)(λb−1)
(λ−1) } otherwise

SF(x,y,λ) = 1−TF(1−x,1−y,λ) for λ >= 0

Table 2.1: Examples of t-norms and their associated s-norms
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2.1.4 The Extension Principle

As indicated earlier, Zadeh has conceived of fuzzy theory not as a single theory

per se, but rather as a process of “fuzzification” – a method for generalizing

any specific representation scheme or theory from crisp (roughly speaking,

first-order predicate logic) to fuzzy. One of the central results that supports this

contention is the Extension Principle. This identifies a natural way to extend

maps between classical sets to maps on fuzzy sets defined over them (as a

universe of discourse).

Definition 2.1.6 (Extension Principle). Given a map,

f : A1×A2× . . .×An → B (2.8)

the natural fuzzy extension, f̃ , is the map determined by:

µ f̃ (a1,a2,...,an)
(y) = sup

f (x1,x2,...,xn)=y
T(µa1(x1),µa2(x2), . . .µan(xn)) (2.9)

for all fuzzy sets a1,a2, . . . ,an defined on A1,A2, . . . ,An respectively. f̃ is some-

times referred to as the sup-t convolution of f .

In other words, the possibility of a particular element being in the image of a

fuzzy set under an extended function is simply the possibility of the disjunc-

tion of each element that maps to it belonging to that set.

A theorem first presented by Nguyen (1978) for classical fuzzy truth operators

and extended to arbitrary sup t-norm convolutions by Fullér and Keresztfalvi

(1990) connects alpha cuts and extended functions. In plain language it states

that the alphacuts of the image of a fuzzy set (under an extended operator) are

just the images of the alphacuts of that set.
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Theorem 2.1.7. Given a map f : X →Y and a fuzzy set, Awith universe of discourse

X then for all α ∈ [0,1],

f̃ (A)⇂α = { f (x) : x∈ A⇂α} (2.10)

Proof. The proof follows immediately from the definitions. For all y∈Y,

y∈ f̃ (A)⇂α ⇐⇒ sup
f (a)=y

µA(a) ≥ α (2.11)

⇐⇒ ∃a′ ∈ Awith f (a′) = y such that µA(a′) ≥ α (2.12)

⇐⇒ y∈ { f (x) : x∈ A⇂α} (2.13)

This result has also been extended to arbitrary L-fuzzy systems by Bertoluzza

and Bodini (1998).

2.2 Fuzzy numbers

Fuzzy numbers are simply fuzzy sets of real numbers whose membership

functions have the “right sort” of properties. Although the precise conditions

remain the subject of some debate, for example, it is sometimes required that

the membership function be “unimodal”. Alternatively the convexity condi-

tionmay be removed. the following definition is by far themost commonplace:

Definition 2.2.1 (Fuzzy number). A fuzzy number, a, is a fuzzy set of real

numbers with the following properties

a) µa is normal, i.e. there is x∈R such that µa(x) = 1

b) µa is convex, i.e. for all x,y,z∈R if x≤ y≤ zthen µa(y)≥min(µa(x),µa(z))
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Figure 2.1: Examples of fuzzy numbers

c) µa is upper semi-continuous, i.e. for all α∈ [0,1] {x∈R : µa(x) < α}

is open

d) the support of a, a⇃0, is bounded.

Note that this definition also covers what might be termed “fuzzy intervals”.

Examples of fuzzy numbers can be found in Figure 2.1. The set of all fuzzy

numbers are termed the “fuzzy numbers” and denoted, RF .

Because the weak alphacut at zero of a fuzzy number is always the entire real

line, it is notationally convenient to consider instead its level sets.

Definition 2.2.2 (Level set). Given a∈ RF and α ∈ [0,1] define the α level set

of a as

Lα(a) =















a⇂α α ∈ (0,1]

Cl({x∈R : µa(x) > 0}) α = 0

(2.14)

where Cl(X) is the closure (in R) of X ⊂R.

An immediate and attractive consequence of these definitions is the following

theorem.

Theorem 2.2.3. The level sets of a fuzzy number are intervals of the form [x,y].

Proof. Since the support of a is bounded each Lα(a) is bounded. Let x= inf(Lα(a))

and y= sup(Lα(a)). Clearly, Lα(a)⊆ [x,y]. By upper semi-continuity x,y∈ Lα(a)

and hence by convexity, [x,y] ⊆ Lα(a).

There is a natural embedding of the real numbers and their closed intervals
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into RF . This will be denoted by a χ subscript. So, for example, the member-

ship function of 1χ (the embedding of 1) is simply the characteristic function

µ1χ(x) =















1 if x = 1

0 otherwise

(2.15)

A similar notation will be adopted for embedded intervals. So, for example,

µ[0,1]χ(x) =















1 if x∈ [0,1]

0 otherwise

(2.16)

Lemma 2.2.4. If aχ = a′χ then a= a′. Similarly if [a,b]χ = [a′,b′]χ then [a,b] = [a′,b′].

Proof. These results follow immediately from the definitions.

2.2.1 Arithmetic operators

The Extension Principle may also be used to define fuzzy counterparts to the

standard arithmetic operators of addition, multiplication, subtraction and di-

vision. If the standard arithmetic operators are considered as (continuous)

maps from R
2 → R the straightforward application of the principle yields the

following definitions for the extended operators. As is conventional, the exten-

sion of a real arithmetic operator will be denoted by circling its usual symbol.

In the context of the fuzzy numbers it is also possible to derive these opera-

tors by examining the effects of performing interval-based calculations at each

alphacut.

Definition 2.2.5 (Fuzzy-arithmetic operators). For all a,b ∈ RF the extended
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operators ⊕,⊗,⊖,⊘ are determined by

µa⊕b(z) = sup
x+y=z

min(µa(x),µb(y)) (2.17)

µa⊗b(z) = sup
xy=z

min(µa(x),µb(y)) (2.18)

µa⊖b(z) = sup
x−y=z

min(µa(x),µb(y)) (2.19)

µa⊘b(z) = sup
x
y=z

min(µa(x),µb(y)) (2.20)

2.2.2 Partial orderings

For real numbers, a,b, a≤ b if and only if a= min(a,b). Following this observa-

tion, the Extension Principle may be used to induce a natural partial ordering,

4, on the fuzzy numbers

a 4 b ⇐⇒ a = m̃in(a,b) (2.21)

⇐⇒ µa(z) = sup
min(x,y)=z

min(µa(x),µb(y)) ∀z∈R (2.22)

This ordering extends the standard (total) ordering of the reals in the sense that

agrees with the standard ordering on the set embedded reals.

Since the set of fuzzy numbers whose membership functions are zero outside

some given real interval [a,b] can be characterised as

{x∈RF : aχ 4 x∧x 4 bχ} (2.23)

It is therefore natural to denote such an interval of fuzzy numbers by [aχ,bχ].

Another partial order on the fuzzy numbers is generated by the fuzzy subset

relation.
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Definition 2.2.6 (Subsumption). Given a,b∈RF b is said to subsume a (written

a⊆ b) if and only if for all x∈R,

µa(x) ≤ µb(x) (2.24)

One number subsumes another if, loosely speaking, it is a less precise version

of it. Subsumption has some useful properties under the fuzzy arithmetic op-

erators which will be discussed in a following section.

A key property of the subsumption ordering, that has not been widely ob-

served, is that it “carries over” extended operators in the sense of the following

Lemma.

Lemma2.2.7. Given an operator ∗ :Rn →R and fuzzy numbers, a1,a2, . . . an,b1,b2, . . .

bn such that ai ⊆ bi for all 1≤ i ≤ n then

⊛(a1,a2 . . .an) ⊆ ⊛(b1,b2 . . .bn) (2.25)

Proof. By the Extension Principle

⊛(a1,a2 . . .an)(x) = sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

ai(xi)} (2.26)

≤ sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

bi(xi)} (2.27)

= ⊛(b1,b2 . . .bn)(x)

This result allows complex calculations (such as the Bayesian sum of products

expression for joint probability distribution considered later) to be rearranged

and computed from partial results just as in the classical case.
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2.2.3 Functions

Extending a real operator (i.e. a mapping fromR
n to reals) does not necessarily

yield a fuzzy real operator. However if the operator maps closed intervals to

closed intervals, then its extension will map fuzzy reals to fuzzy reals. All con-

tinuous functions have this property. Furthermore if the function is injective

(or, equivalently, monotonic) then whenever

Lemma 2.2.8. If f :R→R is continuous then the map f̃ :RF →R
F determined by

µ f̃ (a)(y) = sup{µa(x) : y = f (x)} (2.28)

is well-defined.

Proof. By Theorem 2.1.7 and 2.2.3 it suffices to consider the level sets. By

the Extreme Value Theorem, since f is continuous the image of level sets (i.e.

closed intervals) are also closed intervals. Thus f̃ is well-defined.

2.2.4 Algebraic properties

With the exception of ⊘, the basic arithmetical operators described above are

closed with respect to the fuzzy numbers. As with their classical analogues,

fuzzy addition and multiplication are commutative and associative with iden-

tities 0χ and 1χ respectively. There are however, some important differences

between classical and fuzzy arithmetic. First, fuzzy numbers are not distribu-

tive in the classical sense. Instead they are subdistributive i.e. for all a,b,c∈RF ,

a⊗ (b⊕c) ⊆ (a⊗b)⊕ (a⊗c) (2.29)
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It is important to note however, that where the fuzzy numbers involved are

strictly positive (or negative) full distributivity is retained.

Second, in general, fuzzy numbers have neither additive nor multiplicative

inverses, although there are (non-unique) pseudo-inverses. In particular, for

all a∈RF , 0χ ⊆a⊕(0χ⊖a) andwith the usual cautions about 0, 1χ ⊆a⊗(1χ⊘a).

In short, RF equipped with ⊕,⊗ and their respective identities 0χ,1χ is a sub-

distributive, commutative semi-ring.

2.2.5 Solving fuzzy equations

The lack of true multiplicative and additive inverses presents a problem for

solving systems of fuzzy arithmetical equations. In classical linear algebra so-

lutions are found by “doing the same” to both sides of an equation. To take

a trivial example, consider solving y = x+ 3 for x. In Peano arithmetic, the

(additive) inverse of 3 is added to both sides yielding

y+(−3) = x+3+(−3) = x+0 = x (2.30)

In fuzzy arithmetic, however, since the constant term (“3” above) might not

have an inverse this simple strategy fails and indeed the equation might not

have a solution (depending, roughly speaking, on the value of y).

However it is possible to obtain traction under various conditions.

Lemma 2.2.9. If f is a continuous, monotonic function then its fuzzy extension f̃ has

the property that for all a,b∈RF

f̃ (a) ⊆ f̃ (b) ⇐⇒ a⊆ b (2.31)
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Proof. By Lemma 2.2.8 f̃ is well-defined. Since f is both continuous andmono-

tonic, it is injective at each level set and so by Theorem 2.1.7 the desired result

is obtained.

2.2.6 Topology

This section presents the standard metric, d∞ on the space of fuzzy numbers

which is essential in providing substance to the to the infinite sums required

for the development of probability theory.

The metric, d∞, is derived from the standard Hausdorff metric.

Definition 2.2.10 (Hausdorff metric). Given a metric space (X,d) let FX be the

set of all closed, bounded subsets of X. Given A ∈ FX and r > 0 let Nr(A, r)

denote the neighbourhood of A with radius r i.e.
⋃

x∈AB(x, r). The Hausdorff

metric is given by

dH(A,B) = inf{r > 0 : A⊂ Nr(B, r)∧B⊂ Nr(A, r)} (2.32)

If a metric space is complete (i.e. every Cauchy sequence has a limit in that

space) then the induced Hausdorff metric space inherits this property.

Theorem 2.2.11. Hausdorff metric spaces inherit completeness

If (X,d) is a complete metric space, then the Hausdorff metric induced by d is also

complete.

Proof. Suppose (An) is a Cauchy sequencewith respect to the Hausdorff metric.

By selecting a sub-sequence if necessary, we may assume that An and An+1 are

within 2−n of each other, that is, that An ⊂ Nr(An+1,2−n) and An+1 ⊂ Nr(An,2−n).
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Now for any natural number N, there is a sequence (dn)n≥N in X such that

xn ∈ An and d(xn,xn+1) < 2−n. Any such sequence is Cauchy with respect to d

and thus converges to some x ∈ X. Now, by applying the triangle inequality,

for any n≥ N, d(xn,x) < 2−n+1.

Define A to be the set of all x such that x is the limit of a sequence (xn)n≥0 with

n∈ An and d(xn,xn+1) < 2−n. Then A is nonempty.

Furthermore, for any n, if x∈ A, then there is some xn ∈ An such that d(xn,x) <

2−n+1, and so A ⊂ Nr(An,2−n+1). Consequently, the set A is nonempty, closed

and bounded.

Now, suppose ε > 0. Thus ε > 2−N > 0 for some N. Let n ≥ N + 1. Then by

applying the claim in the first paragraph, for any xn ∈ An, there is some x ∈

X with d(xn,x) < 2−n+1. Hence An ⊂ Nr(A,2−n+1). Hence the sequence (An)

converges to A in the Hausdorff metric.

In this way it is possible to produce a complete metric space over the set of

closed bounded intervals of R. Recalling that the level sets of a fuzzy number

are such closed bounded intervals this in turn can be extended to the fuzzy

numbers. Note that whilst various other Hausdorff-like metrics have been

proposed for fuzzy sets in general, these have quite serious problems (Brass,

2002).

Definition 2.2.12 (Extended Hausdorff metric d∞). The extended Hausdorff

metric, d∞ :RF ×RF →R is determined by

d∞(a,b) = sup
α∈(0,1]

dH(Lαa,Lαb) (2.33)

Under this metric the distance between embedded real numbers is simply the
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standard Euclidean distance, in the sense of the following Lemma.

Lemma 2.2.13. If a,b∈R then d∞(aχ,bχ) = |a−b|.

Proof. This is an immediate consequence of the definition of the extendedHaus-

dorff metric.

It is well-known that (RF ,d∞) is a complete metric space.

Theorem 2.2.14. (RF ,d∞) is a complete metric space.

Proof. Suppose a1,a2, . . .∈RF is a Cauchy sequence then at each alphacut there

is a Cauchy sequence with respect to dH . By completeness there is a limit in-

terval associated with that alpha.

2.2.7 Convergence results

With this metric in place it is possible to define the convergence of sequences

and sums in the usual manner.

Definition 2.2.15 (Convergence of fuzzy numbers). A sequence a1,a2, . . . ∈RF

is said to converge to a∈RF if for all ε > 0 there is N such that for all n≥ N

d∞(an,a) ≤ ε (2.34)

Such a convergent sequence and its limit will be denoted an → a.

Definition 2.2.16 (Convergent series). Given a sequence a1,a2, . . . ∈ RF , con-

sider the sequence of partial sums bn = ◦
∑n

i=1ai . If bn is a convergent sequence

then an is said to be a convergent series with limit ◦
∑∞ an.

Lemma 2.2.17. If an → a∈R then (an)χ → aχ ∈RF .
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Proof. By Lemma 2.2.13 for all n, d∞((an)χ,aχ) = |an−a|. Now, given ε > 0, since

an is a convergent sequence, there exists an N such that

d∞((an)χ,aχ) = |an−a| ≤ ε (2.35)

for all n≥ N.

2.2.8 Computational issues

It has often been observed that commonly used classes of fuzzy number are not

closed under the standard arithmetic operators. So, for example, the product of

two polygonal fuzzy numbers is not polygonal. This has lead some to conclude

that it is not possible to have a correct (i.e. accurate) and computationally

tractable calculus of fuzzy numbers.

If however, fuzzy numbers are represented by a pair of finite series of finite

polynomial shoulder functions determining the upper and lower boundaries

of their alphacuts, then their arithmetic combinations also fall into this class

and can be computed exactly with relative ease. As a simple example, consider

the fuzzy number, a, determined by the membership function,

µa(x) =































x if x∈ [0,1]

2−x if x∈ (1,2]

0 otherwise

(2.36)

Then a has an equivalent representation as

a⇂α = [α,2−α] (2.37)
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Now, a⊗a has a membership function which can be obtained through solving

quadratic equations and paying careful attention to boundaries

µa⊗a(x) =































√
x if x∈ [0,1]

2−√
x if x∈ (1,4]

0 otherwise

(2.38)

But this is hardly easy to represent and performing further computations with

it will be increasingly complicated. On the other hand, the alphacut represen-

tation is trivially calculated as

(a⊗a)⇂α = [α2,α2−4α+4] (2.39)

Further computations can be performed with similar ease. Naturally, “zero-

crossing” fuzzy numbers (numbers whose membership at 0 is non-zero) re-

quire some caution and introduce precision errors (as it becomes necessary to

“split” the polynomials at their roots).

2.3 Probability theory

This section constitutes a brisk introduction to the formal underpinnings of

contemporary probability theory.

2.3.1 Probability Theory

The predominant formalisation of probability theory is that provided by Kol-

mogorov. These standard definitions may be found in any introductory text
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on probability theory e.g. Grimmet and Welsh (1986). Given an experiment

or trial, such as rolling a die, the set of all possible outcomes or sample space

will be denoted Ω. So, in the die example Ω = {1,2,3,4,5,6}. Clearly, various

questions may be asked about the outcome of a trial. Some of these will be el-

ementary, of the form “Was the outcome ω?”, but others will be about groups

of states. Returning to the die example, one might enquire “Was the outcome

an odd number?” Moreover, it is often convenient to specify the probability of

propositions modelled as such groups of atomic outcomes. The notion of an

event space is used to capture the idea that the relevant propositions should

be closed under logical operators.

Definition 2.3.1 (Event space). A set E is termed an event space on a set Ω of

possible outcomes if and only if

a) E ⊆ P(Ω)

b) E is non-empty.

c) If A∈ E then Ac = Ω\A∈ E

d) If A1,A2, . . . ∈ E then
⋃∞

i=1Ai ∈ E

Events spaces are sometimes also referred to as “sigma algebras” and are said

to be closed under complementation and countable union. Observe that these

conditions entail that both Ω and ∅ = {} are elements of E . With the notion of

an event space in place it is possible to define the central concept of a proba-

bility measure.

Definition 2.3.2 (Classical probability measure). AmappingP :E→R is termed

a probability measure on (Ω,E) if and only if for all E1,E2 ∈ E
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(CP1) P(E1) ≥ 0

(CP2) P(Ω) = 1

(CP3) If E1 and E2 are disjoint (i.e. E1∩E2 = ∅) then P(E1)+P(E2) =

P(E1∪E2)

Where P is such a probability measure, the tuple (Ω,E ,P) is termed a probabil-

ity space.

2.3.2 Conditional probability

Definition 2.3.3 (Conditional probability). Given a probability space (Ω,E ,P)

and E1,E2 ∈ E the conditional probability of E1 given E2, is defined as

P(E1 | E2) =
P(E1∩E2)

P(E2)
(2.40)

An immediate consequence of this definition is that conditional probability

with respect to a given event (E) is itself a probability measure i.e. (Ω,E ,P(x |

E)) forms a probability space.

Although the bar notation (|) is standard, on closer inspection it is somewhat

misleading since bar is not a set-theoretic operation. The P of P(E1 | E2), is

therefore not the same as the Pof P(E1). For this reason, some probabilists prefer

the notation PE2(E1) as this more clearly expresses the relationship with, but

difference from the original measure.

To put things pragmatically for a moment, conditional probabilities have two

chief uses.
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The first is to capture the effect of new information, that is understanding P(A |

B) and the probability that A will occur, given that B has already.

The second is in what artificial intelligence practitioners might term knowl-

edge engineering. Here conditional probabilities may be used to construct a

probabilistic model from a sequence of hypothetical questions. In this case

P(A | B) may be understood as the probability that A would occur, should B.

Although these uses coincide in the classical case, there is a difference in em-

phasis. In the first the unknown is the conditional, while in the second it is the

measure as a whole.

2.3.3 Random variables

Definition 2.3.4 (Random variable). Given a probability space (Ω,E ,P), and

a domain DX, a function X : Ω → DX is termed a random variable on (Ω,E ,P) if

and only if for all x∈ DX,

X−1(x) = {ω ∈ Ω : X(ω) = x} ∈ E (2.41)

Note that where two or more random variables are defined with respect to

the same probability space it is trivial to construct a random variable that rep-

resents their joint distribution. So, suppose X and Y are random variables,

consider Z : Ω → DX ×DY given by

Z : ω 7→ (X(ω),Y(ω)) (2.42)

Now for any z= (x,y) ∈ DX ×DY

Z−1(z) = X−1(x)∩Y−1(y) (2.43)
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which as a finite intersection of elements is in E .

2.3.4 Discrete random variables

Given a random variable X if DX is finite, X is termed a discrete random variable.

Discrete random variables have a useful representational property through the

concept of a mass function.

Definition 2.3.5 (Mass function). Given a discrete random variable, X, defined

on a probability space (ω,E ,P), the function p : DX → [0,1] determined by

pX(x) = P(X−1(x)) (2.44)

is termed the mass function of X.

Theorem 2.3.6 (Representation Theorem). Given a domain, D = {d1,d2, . . . ,dN},

and π1,π2, . . . ,πN ∈ [0,1] such that
∑N

i=1πi = 1 there is a random variable, X with

domain such that for all di ∈ D,

pX(di) = πi (2.45)

Proof. Since D is finite, define P : P(D) → [0,1] by

P(E) =
∑

i : di∈E

πi (2.46)

By construction, P(D) = 1. Moreover, for all E1,E2 ∈ P(D), P(E1) ≥ 0 and if

E1∩E2 = ∅, P(E1)+P(E2) = P(E1∪E2). So, (D,P(D),P) is a probability space.

Finally, take X to be the identity map (mapping elements of D to themselves).

Clearly, pX(di) = πi as required.

This theorem allows the formal differences between probability measures and

mass functions to be elided most of the time.
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2.3.5 Continuous random variables

Continuous random variables are simply random variables whose domain is

the Borel sigma algebra of R (or Rn in the multivariate case). This is usually

expressed through the following equivalent definition.

Definition 2.3.7 (Continuous Random Variable). Given a probability space

(Ω,E ,P) a function X : Ω →R is termed a continuous random variable if and

only if for all α ∈R the preimage of (−∞,α] is in E i.e.

{x∈ Ω : X(x) ≤ α} ∈ E (2.47)

2.4 Bayesian networks

Bayesian networks are a knowledge representation technique. As such they

have applications in knowledge engineering and machine-learning contexts.

This section describes the basic principles and advantages of BNs

2.4.1 Basic graph concepts

Bayesian networks are graphical models, for the purposes of conceptual and

notational clarity I will rehearse some basic concepts and defintions.

Definition 2.4.1 (Simple graph). A simple graph is a pair, G = (V,P), whereV is

a finite set of vertices (or nodes) and P a function

P : V → P(V \{v}) (2.48)

The nodes in P(v) are said to be the parents of v. The set {v}∪P(v) is termed

the family of v and denoted F(v)
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Note that this definition excludes both reflexive loops (nodes that are their own

parents) and “multiple edges”, which are sometimes considered in broader

graph theory. Graphs are depicted as circled nodes with arcs (or edges) con-

necting them to their parents.

Definition 2.4.2 (Directed graph). The arc between two nodes, v1,v2 is said to

be undirected if v1 ∈ P(v2) and v2 ∈ P(v1). If this is not the case, the arc is said

to be directed. Graphs containing only (un)directed arcs are themselves termed

(un)directed. If a graph contains a mixture of both directed and undirected

arcs, it is termed a chain graph.

A

B C

D

(a) A simple graph

A

B C

D

(b) Directed graph

A

B C

D

(c) Directed acyclic graph

Figure 2.2: Some examples of different types of graph

Undirected arcs are commonly depicted as plain connecting lines, whereas

directed arcs have arrow pointing from parent nodes to their children. Fig-

ure 2.2(a) displays a sample chain graph with V = {A,B,C,D}, P(A) = {B,C},

P(B) = {A}, P(C) = {A,B,D} and P(D) = {B}.

Definition 2.4.3 (Connected graph). An undirected graph, G = (V,P) is said

to be connected if there is a “path” between any two nodes i.e. for all v1,v2 ∈V

there is a sequence l1, l2, . . . , lN ∈V such that l1 = v1, lN = v2 and l i+1 ∈ P(l i) for

all i ∈ 1,2, . . . ,N−1.
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Lemma 2.4.4. A directed acyclic graph, (V,P) has at least one node, l such that for

all v∈V , l /∈ P(v). Such a node is termed a leaf.

Proof. Suppose for a contradiction that every node has a child. In this case

there exists a sequence v1,v2, . . . ,vN such that vi+1 ∈ P(vi) for all i. However if

N > |V| by the pigeon hole principle vi = v j for some i 6= j . This contradicts the

acylicity of the graph.

2.4.2 Representation

A Bayesian network represents a joint probability mass function as a directed

acyclic graph whose nodes correspond to discrete random variables. Associ-

ated with each node is the conditional probability table for that variable given

its parent nodes. However, these associations are a matter of interpretation

whereas the network itself is a formal construct:

Definition 2.4.5 (Bayesian network). A Bayesian network consists of three ele-

ments:

a) A finite directed acyclic graph, G = (V,P)

b) An association between each of node of G, vi and a domain or set

Dvi

c) An association between each node of G, vi and a function

pi : Dvi ×
∏

v∈P(vi)
Dv → [0,1] (2.49)

with the property that for all (di1,di2, . . .dim) ∈ ∏

v∈P(vi)
Dv

∑

d∈Dvi

pi(d,di1,di2, . . .dim) = 1 (2.50)
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Now, to flesh out the claim that such a graphical structure is an “appropriate”

representation for joint probability mass functions it will be useful to examine

two properties of the approach.

The first property is what Charniak (1991) calls consistency: that the product of

the node functions may be construed as a joint probability mass function.

Theorem 2.4.6 (Consistency). Given a Bayesian network as above, the product of

the node functions where (as before) vi j denotes the jth parent of node i,

λ(v1,v2, . . . ,vn) =

|V|
∏

i=1

p(vi ,vi1,vi2, . . .vim) (2.51)

determines a joint probability mass function on
∏

v∈V Dv.

Proof. By 2.3.6 it is sufficient to show that these terms are positive and sum to

unity. The proof proceeds by induction on N. Where N = 1 the result holds

trivially. Now suppose the result holds for all Bayesian networks with n nodes

and consider a Bayesian network with N+1 nodes. By 2.4.4, Ghas a leaf node.

Removing this node yields a graph of nnodes which (by inductive hypothesis)

is consistent. Finally, by re-arranging the sum

∑

di∈Dvi

N+1
∏

i=1

pi(di,di1,di2, . . . ,dim) (2.52)

=
∑

di∈Dvi ,i 6=l

N+1
∏

i 6=l

pi(di,di1,di2, . . . ,dim)
∑

dl∈Dvl

pl(dl ,dl1,dl2, . . .dlm) (2.53)

=
∑

di∈Dvi∀i 6=l

∏

pi(di,di1,di2, . . . ,dim) (2.54)

= 1 (2.55)

the desired result is obtained.
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Consistency guarantees that the function encoded by a Bayesian network struc-

ture has the right form to be a joint distribution. It does not, however, demon-

strate any connection between the abstract node functions or graphical struc-

ture and that distribution.

The second property – what will be termed completeness – shows that Bayesian

networks are a sufficient representation i.e. that every joint distribution can be

represented in that way.

Theorem 2.4.7 (Completeness). Any probability mass function can be represented

as a Bayesian network.

Proof. Given a joint mass function p(X1,X2, . . . ,XN), let G = (V,P) where

V = {X1,X2, . . . ,XN} (2.56)

and

P : Xi 7→ {Xj ∈V : j < i} (2.57)

An example of such a graph for a joint mass function with N = 4 is shown in

Figure 2.3. Clearly this is a DAG. Moreover by Bayes’ Theorem the product of

node functions is
n

∏

i

p(Xi | P(Xi)) = p(X1,X2, . . . ,XN) (2.58)

as required.

2.4.3 Inference in Bayesian networks

Bayesian networks are not only an efficient representation of a joint probability

distribution. The conditional independence relations encoded in the graphical
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X1 X2 X3 X4

Figure 2.3: A sufficient graph for a joint distribution with four random variables.

structure support a variety of algorithms for computing probabilities of inter-

est. This process is commonly termed inference in Bayesian networks.

It is a well-established result (Cooper, 1990) that exact inference in Bayesian

networks is NP-hard (Garey and Johnson, 1979). Indeed Dagum and Luby

(1993) have proven the same of approximate inference within a given error

bound.

Nevertheless, outside the worst-case scenarios envisaged by complexity the-

ory, the additional structure of conditional independence encoded by Bayesian

networks, can be utilized to efficiently compute conditional probability values.

From the first-generation message-passing (Pearl, 1986, 1988) techniques to the

current state-of-the-art join tree-based schemes (Lauritzen and Speigelhalter,

1988; Jensen, 1989; Huang and Darwiche, 1994) efficient inference algorithms

have a common objective: to re-arrange the directed factorisation of a joint

probability mass function in order to minimize the number of addition and

multiplication operations required.

By way of a concrete example suppose the task was to marginalize the Markov

chain

λ(x,y,z) = f (x,y)g(y,z)h(z) (2.59)
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with respect to y and z. The simplest approach is just to sum

∑

y∈Dy,z∈Dz

f (x,y)g(y,z)h(z) (2.60)

This calculation involve |Dy||Dz| additions and 2|Dy||Dz|multiplications. How-

ever this sum of products may be re-arranged as

∑

y∈Dy

f (x,y)
∑

z∈Dz

g(y,z)h(z) (2.61)

which requires only |Dy|+|Dz| additions and |Dy||Dz|multiplications. Although

the asymptotic time complexity remains exponential, this calculation can be

much more efficient in practice.

Algebraically, all that these transformations require is that the underlying ring

(or indeed semi-ring) be distributive.

2.5 Summary

This chapter has sought to present in condensed form the mathematical nota-

tion and concepts that underpin the work presented in this thesis.

The material presented in the first two sections, describing fuzzy logic and

probability theory, is an essential pre-requisites for understanding the follow-

ing chapter. There a survey is made of the ways in which other fuzzy logic

researchers have attempted to hybridize fuzzy logic and probability theory.

But the detail provided above comes into play most crucially in Chapter 4

where the novel theory of Linguistic probabilities is developed. The various
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concepts, theorems and lemmas marshaled above will feed into both the spec-

ification of theory and the pendant analysis of its properties. Roughly speak-

ing, the aim will be to “carry over” as much of classical probability theory as

possible, but also to illuminate the differences between the two.

The final section above, with its brisk sketch of Bayesian network research may

be largely disregarded until Chapter 5 where the theoretical application of the

Linguistic Bayesian network is presented.



Chapter 3

Vague probabilities

Over the years, various hybrid fuzzy-probabilistic theories have been presented

in the literature. It is convenient to think of these in context of the hierarchy

of classical probability theory a diagram of which may be found in Figure 3.1.

The light blue ovals in this diagram represent different “spaces”, understood

conventionally as classical sets, and the light green arrows represent the map-

pings whose definitions essentially characterise the theory. The various hybrid

theories described here may be seen as replacing one or more of the spaces, and

the relevant functions with appropriate fuzzy generalisations.

3.1 Fuzzy random variables

In practice there are many situations where the factors of interest are not real

numbers (or real vectors in the more general multivariate case) but linguis-

tic terms. So, for example, one might be interested in whether a particular

41
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Probability
measure

Outcomes

Events Real line

Unit interval

Gives rise to
boolean algebra

Probability
distribution

Random
variable

Measure−
theoretic
constraints

Figure 3.1: A schematic of conventional probability theory. The oval shapes represent

classical sets. In hybrid fuzzy-probabilistic theories, one or more of these is replaced

by an appropriate fuzzy generalisation.
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measurable is much greater than zero. Alternatively it may be the case that the

outcomes of an experiment are expressed in inexact linguistic terms. As an

example (derived from Puri and Ralescu (1986)), consider a survey whereby

people are asked to give their opinion about the weather. Typical responses

might include “cold”, “not bad for this time of year” and so on. In this context

is reasonable to ask: What is the average opinion about the weather?

The term “fuzzy random variable” was first introduced in the literature by

Kwakernaak (1978a,b) and refined by Kruse and Meyer (1987). In this theory

(KKM) fuzzy random variables are interpreted as fuzzy perceptions of classical

random variables (referred to as the original of its fuzzy counterpart), much as

a linguistic label can be interpreted as fuzzy perceptions of its base variable.

Of the two, the second framework is more general but their equivalence under

reasonable assumptions has been demonstrated by Zhong and Zhou (1987).

The main difference seems to be stylistic - Kwakernaak’s framework is more

real-analysis oriented, Puri and Ralescu’s more topological. In both settings

it is possible to give well-founded fuzzy counterparts of statistics such as ex-

pected value and variance (Kruse and Meyer, 1987; Puri and Ralescu, 1986).

There are also proofs of major limit theorems such versions of the Law of Large

Numbers and the Central Limit Theorem. (Summaries in Corral et al. (1998)

and Ralescu (1995b))
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3.2 Fuzzy information systems

An alternative type of approach concerns what conclusions may be drawn

about a classical probabilistic system on the basis of available fuzzy informa-

tion. Okuda et al. (1978) and Tanaka et al. (1979) have developed techniques

centring on the concept of a fuzzy information system.

Given a probability space (Ω,E ,P) and a classical random variable, X a Borel-

measurable fuzzy set of X(Ω) is termed fuzzy information. A partition (in the

sense of Ruspini (1970)) is then defined to model all available observations.

3.3 Zadeh’s fuzzy probabilities

The term “fuzzy probability” first appears, albeit incidentally, in the second

part of Lotfi Zadeh’s seminal paper on linguistic variables (Zadeh, 1975b).

Here, Zadeh mentions in passing that fuzzy quantifiers, which are introduced

to capture the sense of vague quantifiers such as “most” or “few” can be thought

of as being like fuzzy probabilities. It was not until the mid-eighties, how-

ever, that Zadeh revisited the idea. In “Fuzzy probabilities” (Zadeh, 1984) he

presents two quite separate answers to the question “What is the probability

of a fuzzy event?”.

The following section outlines Zadeh’s approach with reference to a simple

data-centred example. It is followed by critical examination of the two tech-

niques which identifies a series of statistical, theoretical and technical ambigu-

ities and deficiencies. [Some solutions are proposed?]
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x b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

µB(x) 0.4 0 0.2 0.8 1 0 0.9 0.4 0.1 0.5

Table 3.1: A bag of balls and their blackness

The main example of Zadeh (1984) seeks to assess the probability that a car,

c, will be stolen as the probability that a randomly selected car is (fuzzily)

like c and has been stolen. This is inexplicable as it is clear that a conditional

probability (what is the chance that a car will be stolen given that it is like c?)

would be more appropriate.

As a basis for the following discussion then, consider instead a bag containing

10 balls of varying shade. The fuzzy set of black balls (with respect to the uni-

verse of discourse U = {b0,b1, . . .b9}) has a membership function µB listed in

Table 3.1. Zadeh’s approaches will then be assessed with respect to the ques-

tion: What is the probability of selecting a black ball?

3.3.1 ZFP Type 1

Zadeh’s first approach to this question calculates the desired probability in

terms of the crisp “cardinality” (or “sigma-count”) of B. This is obtained by

simply summing up the membership function of the fuzzy set.

Σcount(B) = 0.4+0+0.2+0.8+1+0+0.9+0.4+0.1+0.5= 4.3 (3.1)

The probability is then calculated by dividing this through by the size of the

universe of discourse i.e.

ZP(B) =
Σcount(B)

|U | =
4.2
10

= 0.42 (3.2)
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3.3.2 ZFP Type 2

Zadeh’s second definition relies on the concept of “fuzzy cardinality” which

is rather loosely defined in terms of the “sigma representation” of a fuzzy set.

Cleaning up some ambiguities and recasting in modern notation yields the

following definition,

Definition 3.3.1 (Zadeh’s fuzzy cardinality). Given D, a universe of discourse

and A, a fuzzy set defined over D, the fuzzy cardinality of A,

FGcount(A)⇂α = [|A⇂1|, |A⇂α|] (3.3)

Or, equivalently,

µFGcount(A)(x) = max
{

max
x′∈X

(µA(x′)) : X ∈ P(D)∧|X| ≤ x
}

(3.4)

Definition 3.3.2 (Zadeh’s fuzzy probability). Given D, a (finite) universe of

discourse and A, a fuzzy set defined on that universe, the fuzzy probability of

A,

ZFP(A) =
FGcount(A)

|D|χ
(3.5)

Returning then to the black ball example, this definition yields the fuzzy num-

ber graphed in Figure 3.2.

3.3.3 Critical evaluation

Although these approach have a certain intuitive appeal, they share a number

of serious problems.

First, the definitions involved tacitly assume a finite set of outcomes with

equiprobable elements. Such a space, although commonplace in didactic ex-
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Figure 3.2: The fuzzy probability, ZFP(B)
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amples involving cards and coins, does not provide an adequate framework

for infinite sets of outcomes (as required for continuous random variables).

The assumption that outcomes are equiprobable is also problematic – consider,

to take a trivial example, an unfair coin.

This said, it is relatively easy to see how to begin to remedy these deficiencies.

Definition 3.3.3 (Measurable fuzzy set). Given a probability space (Ω,E ,P)

a fuzzy set A (defined over Ω) is said to be measurable if and only if for all

α ∈ [0,1], alpha⇂A ∈ E .

By definition a fuzzy set is measurable if and only if its membership function

is measurable (in the usual sense). Note also that the measurable sets form a

closed class under (fuzzy) intersection, union and complementation.

Now, supposing that A is a measurable fuzzy set the natural extension of

Zadeh’s first measure, ZP, is the Lebesgue integral,

ZP′(A) =

∫

Ω
µA dP (3.6)

An analogue for ZFP is similarly well-defined:

ZFP′(A)⇂α = [P(A⇂1),P(A⇂α)] (3.7)

However, even if it is accepted that these formulations resolve the technical

issues with Zadeh’s approaches the resulting theory of probability has unde-

sirable consequences.

First, the sort of fuzzy probabilities envisaged by ZFPall have the same sort of

“left-crisp” shape – speaking loosely that of a right angle triangle facing to the
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right. Thus ZFPis out of the running when it comes to grounding subjective

probability assessments such as “about an even chance”.

Another concern, invited perhaps by the concentration of two quite separate

ideas into a single paper, is that there are no guidelines for applicability i.e.

when to use the crisp probability of a fuzzy event and when the fuzzy. It is

perhaps unfair to level this criticism at what is clearly a preliminary investiga-

tion, but on the other hand this lack of context makes it difficult to see how to

extend the work.

Finally, whilst Zadeh’s approach may be useful for such data-centred applica-

tions, from the point of view of the probability theorist this approach is some-

what dubious as it rests on the assumption that the set out outcomes is both

finite and that individual outcomes are equiprobable.

Zadeh’s theory then, as a finite theory, cannot be expected to provide ana-

logues for classical random variables. But worse still, the equiprobability as-

sumption means that it is restricted to analytic examples (such as lotteries and

card games) where all information is available. Ideally a theory of fuzzy prob-

abilities would support a clear calculus in their own terms rather than, as here,

a frequentist estimation method.

3.4 Bayesian Fuzzy probabilities

On Zadeh’s theory fuzziness in a probability is secondary – merely a shadow

of the primary fuzziness of the event of interest itself. Although survey papers

have tended to conflate the two, it is exactly this point that distinguishes the
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different approach to “fuzzy probabilities” taken by Jain and Agogino (1990).

Arguably this paper has been the most influential publication in the area, how-

ever it will be demonstrated that for technical reasons the theory it presents

cannot provide a satisfactory model for qualitative probability assessments.

Jain andAgogino call their version of fuzzy probabilities “Bayesian fuzzy prob-

abilities”. The presentation here differs substantially from the original formu-

lation of these ideas. In particular, Jain and Agogino do not explicitly use the

idea of a probability measure either to place bf in the context of an event space

or to define the “mean” function m.

Definition 3.4.1 (Bayesian fuzzy probability measure). Given an event algebra,

E , defined over a set of outcomes, Ω, a function bf from the set of events to the

set of “convex normalized fuzzy set[s] . . . of [0,1]” is a Bayesian fuzzy probability

measure if and only if for all A,B∈ E

(BF1) bf(A) has a unique “mean” i.e. there is a function m : E → [0,1]

such that for all x∈ [0,1], µbf(A)(x) = 1 if and only if x = m(A) (in this

case bf(A) is said to be unimodal)

(BF2) µbf(A) is continuous on (0,1)

(BF3) m (as defined in BF1) is a probability measure

(BF4) bf(Ω) = 1χ

(BF5) If A and B are disjoint then bf(A)⊕bf(B) = bf(A∪B)

At first sight this definition seems reasonable and indeed it can and has be

used as an informal theory for reasoning with fuzzy probabilities, however

as a formal theory it is seriously defective as a consequence of the following



Chapter 3. Vague probabilities 51

Lemma.

Lemma 3.4.2. For any event E ∈ E , µbf(E)(x) = 0 for all x < m(E). Such a member-

ship function is termed left-crisp.

Proof. Consider an arbitrary event E ∈ E . By definition bf(E) has a unique

mode m(E) ∈ [0,1] such that µbf(E)(m(E)) = 1 = µbf(Ec)(1−m(E)). Suppose, for

a contradiction, that 0 < µbf(E)(x) ≤ 1 for some 0 ≤ x < m(E). Clearly, 0 < 1−

m(E)+x < 1 and by the definition of ⊕

0 = 1χ(1−m(E)+x)

= µbf(E∪Ec)(1−m(E)+x)

= max
z+z′=1−m(E)+x

min(µbf(E)(z),µbf(Ec)(z
′))

≥ min(µbf(E)(x),µbf(Ec)(1−m(E)))

> 0 (!)

So µb f p(E)(x) = 0 for all x < m(E).

Thus every BFP is necessarily left-crisp and therefore the theory cannot act as

a formal model for vague probability assessments such as “quite likely” which

tail-off smoothly to the left of their peak. Note that this criticism applies also

to Zadeh’s fuzzy probabilities.

Worse still, there are two ways to strengthen this result to a proof that BFPs

can only be embedded point probabilities (i.e. both left and right-crisp), both

of which seem to reflect Jain and Agogino’s intentions if not their precise for-

mulation.

First, ⊕ is an operator defined on the fuzzy reals, not pairs of “convex nor-

malized fuzzy set[s] . . . of [0,1]”. Lemma 1 rests only on the assumption that
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Jain and Agogino tacitly intended some form of ⊕ restricted to the unit inter-

val. Without such a restriction Bayesian fuzzy probabilities reduce immedi-

ately to embedded classical probabilities. To see this, suppose that for some

m(E) < x≤ 1, µbf(E)(x) > 0. Then, as before,

0 = µ1χ(1−m(E)+x)

= µbf(E∪Ec)(1−m(E)+x)

≥ min(µbf(E)(x),µbf(Ec)(1−m(E)))

> 0 (!)

And thus, bf(E) = m(E)χ.

Second, it seems clear from their examples, that Jain and Agogino intend that

for all E ∈ E , bf(E) = 1χ ⊖ bf(Ec). Indeed this principle has considerable in-

tuitive appeal, since it is roughly equivalent to the assertion that if you know

something (however imprecise) about the probability of an event, then you

know “just as much” about the probability of that event’s complement. This

will be elaborated further in the following Section.

But in this case, since every event is the complement of some left-crisp event,

all events are also right-crisp. Again, the theory reduces to an embedding

of classical point probabilities. Similar criticisms of the existing theories, al-

beit couched in very different language and developed independently can be

found in Gert de Cooman’s most recent work (de Cooman, 2003a) on possi-

bilistic previsions.
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3.5 Summary

This section has reviewed a number of hybrid fuzzy-probabilistic theories in

an attempt to locate the research that will be presented in the following chap-

ters with respect to existing work in the area. The discussion centred on the

contributions from Zadeh and Jain and Agogino which are the most widely

cited theories of “fuzzy probability”.

A close analysis of these theories showed that they have significant weak-

nesses. Zadeh’s work is practically-oriented and because it lacks a formali-

sation, not immediately applicable outside data-centric context and (relatedly)

ill-at-ease with contemporary subjectivist accounts of probabilities. Jain and

Agogino’s work is therefore to be praised for its attempt to address these is-

sues by providing a formalisation of the concepts. However, as shown above,

this formalisation is fundamentally flawed, with their Bayesian fuzzy proba-

bilities reducing immediately to embedded classical (or “point”) probabilities.

Nevertheless, the core ideas behind these two bodies of work are sound. In

this way, and as a matter of biography, they are the motive and cause of what

follows.



Chapter 4

Linguistic Probability Theory

This chapter introduces the theory of linguistic probabilities. The presentation

here is self-consciously patterned after the exposition of classical probability

theory in Chapter 2 to emphasise the parallels between the proposed and the

classical constructions.

The first section presents the basic characterisation of linguistic probability

measures. The axioms are discussed and some simple consequences of the the-

ory examined. The second section builds upon these measure-theoretic foun-

dations by developing a theory of linguistic random variables. The discrete

case is examined in some detail and – crucially – an analogue for the classical

representation theorem for discrete random variables is provided. The chapter

closes with a sketch of how the theory might be developed to cover continuous

linguistic random variables.

54
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4.1 Linguistic probability measures

As with the classical theory, Linguistic probabilities are defined in terms of a

measurable function.

Definition 4.1.1 (Linguistic probability measure). Given an event algebra E

defined over a set of outcomes Ω, a function LP :E →R
F is termed a linguistic

probability measure if and only if for all A,B∈ E

(LP1) 0χ 4 LP(A) 4 1χ

(LP2) LP(Ω) = 1χ

(LP3) If A1,A2 . . . are a sequence of pairwise disjoint events then

∞

◦
∑

i

LP(Ai) ⊇ LP(

∞
⋃

i

Ai) (4.1)

(LP4) LP(A) = 1χ ⊖LP(Ac)

where LP is a linguistic probability measure on (Ω,E), the tuple (Ω,E ,LP) is

termed a linguistic probability space.

Like the first two axioms of classical probability theory LP1 and LP2 simply

specify the quantity space in which probabilities will be assessed. Note that

LP1 entails that linguistic probabilities have zero membership outside the unit

interval and (together with LP4) that LP(∅) = 0χ. Again, although the choice of

unit interval is somewhat arbitrary it simplifies the definition of expectation.

The most significant parts therefore are LP3 and LP4. The underlying intuition

is that vagueness in a probability acts as a soft constraint on all probabilities

that are logically linked to it.
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LP3 – countable subadditivity – is intended to capture the intuition one might

know the probability of the union of (say) two disjoint events more precisely

than the probabilities of either individually. Consider, for example, tossing a

coin which one is told is almost unbiased. Here, knowledge about the proba-

bility of the result being heads (or tails) is uncertain, but the probability that

result will be either heads or tails is certain (and equal to 1). Equally, the prob-

ability that the result will not be both heads and tails is certain (and equal to 0).

Note that LP3 is asserting that LP(Ai) is a convergent series.

In a similar vein, LP4 expresses that knowing something about the probability

of an event translates into equally precise knowledge about the probability of

its complement. Or, to put it another way, that it is unthinkable that one might

have more knowledge about the probability of an event than it’s complement.

4.1.1 Properties of linguistic probability measures

Classical probability measures are monotonic and this property is shared by

linguistic probability measures as the following theorem demonstrates.

Theorem 4.1.2. (Ω,E ,LP) and A,B∈ E if A⊆ B, then LP(A) 4 LP(B)

Proof. By LP3, for any α ∈ [0,1] LP(B) ⊆ LP(A)⊕LP(B\A),

⌊LP(B)⌋α ≥ ⌊LP(A)⌋α + ⌊LP(B\A)⌋α (4.2)

Now, ⌊LP(B\A)⌋α ≥ 0 and hence ⌊LP(B)⌋α ≥ ⌊LP(A)⌋α. On the other hand,

since LP(Ac) ⊆ LP(Bc)⊕LP(Ac\Bc),

⌊LP(Ac)⌋α ≥ ⌊LP(Bc)⌋α + ⌊LP(Ac\Bc)⌋α (4.3)
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As before, ⌊LP(Ac\Bc)⌋α ≥ 0 and hence

⌈LP(A)⌉α = 1−⌊LP((cA))⌋α ≤ 1−⌊LP(Bc)⌋α = ⌈LP(B)⌉α

In classical probability theory there is an important result asserting that prob-

ability measure are continuous. This result paves the way for continuous ran-

dom variables and density functions. Linguistic probability measures also

share this property.

Theorem 4.1.3. Given a linguistic probability space (Ω,E ,LP), and an increasing

sequence A1 ⊆ A2 ⊆ . . . with limit A =
⋃∞

i Ai then

LP(A) = lim
n→∞

LP(An) (4.4)

Proof. Define a sequence Bi , such that

Bi = Ai+1\Ai (4.5)

Clearly the Bis are disjoint from one another and from Ai (for a given i). Hence,

by LP3, for all N,

LP(A) ⊆ LP(AN)⊕
∞

◦
∑

N

LP(Bi) (4.6)

By Theorem 4.1.2 the sequence of partial sums is decreasing and bounded be-

low (by 0χ) and therefore converges. Furthermore,

lim
N→∞

∞

◦
∑

N

LP(Bi) = 0χ (4.7)

Now since all limits exist,

LP(A) ⊆ lim
N→∞

LP(AN) (4.8)

Similarly

LP(AN
c) ⊆ LP(Ac)⊕

∞

◦
∑

N

LP(Bi) (4.9)
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and hence

1χ ⊖ lim
N→∞

LP(AN) = lim
N→∞

LP(AN
c) ⊆ LP(Ac) = 1χ⊖LP(A) (4.10)

thus, by Lemma 2.2.9,

lim
N→∞

LP(AN) ⊆ LP(A) (4.11)

Taken together 4.8 and 4.11 yield the desired result.

4.1.2 Relation with classical probabilities

Linguistic probability measures generalise classical probability measures in

the sense of the following Lemmas.

Lemma 4.1.4. Given a classical probability measure, P, the map LP :E →R
F deter-

mined by LP(A) = (P(A))χ is a linguistic probability measure.

Proof. Clearly, LP(Ω) = 1χ, LP(∅) = 0χ and 0χ 4 LP(A) 4 1χ for all A ∈ E as

required. Now for pairwise disjoint A1,A2 . . . ∈ E ,

LP(
∞
⋃

i

Ai) = (P(
∞
⋃

i

Ai))χ = (
∞

∑

i

P(Ai))χ (4.12)

which by Lemma 2.2.17,

=
∞

◦
∑

i

P(Ai)χ =
∞

◦
∑

i

LP(Ai) (4.13)

Finally, for all A∈ E . LP(A) = (P(A))χ = (1−P(Ac))χ = 1χ ⊖LP(Ac).

Thus any classical probabilitymeasure has an (unique embedding as an) equiv-

alent linguistic probability measure. Similarly, any linguistic probability mea-

sure assigning only embedded point probabilities uniquely determines a clas-

sical probability measure.



Chapter 4. Linguistic Probability Theory 59

Lemma 4.1.5. Given a linguistic probability measure, LP, such that for all A ∈ E ,

LP(A) = (pA)χ for some pA ∈R the map, P :E → [0,1], determined by P(A) = pA is a

probability measure.

Proof. Clearly, P(∅) = 0 and P(A) ≥ 0 for all A ∈ E as required. Now, given

disjoint A1,A2 . . . ∈ E and letting A =
⋃∞

i Ai ,

(pA)χ = LP(A) ⊆
∞

◦
∑

i

LP(Ai) =
∞

∑

i

(pAi )χ = (
∞

∑

i

pAi)χ (4.14)

By Lemma 2.2.4, pA =
∑∞

i pAi as required.

4.2 Conditional probability

As discussed in Chapter 2, conditional probabilities have two aspects. First

they provide a means of updating a probability measure on receipt of new

information. Second they allow the construction of complex probability mea-

sures through the consideration of simple what-if scenarios.

Given a linguistic probability space (Ω,E ,LP), suppose one discovers that A∈

E has occurred. How should this affect ones knowledge about the linguistic

probability of some other event B? As in the classical case, the idea will be to

restrict the measure to A and normalize yielding a new probability measure.

In classical probability theory the quantity space is a field (the real line) so this

“normalization” is unproblematic. However the case of linguistic probabilities

is not so clear cut.

To frame the issuemore precisely: given a linguistic probability space (Ω,E ,LP)

and E ∈ E (such that LP(E) ∈ (0χ,1χ]) is there a “conditional” linguistic proba-
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bility measure on the sigma algebra (E,{E∩A : A∈ E}) such that

LP(E)⊗LPE(A) = LP(E∩A) (4.15)

for all A∈ E?

The following example shows that the answer to this question is negative at

least in some cases. Consider flipping a perfectly fair coin. If the result is

heads then the coin is flipped again. If not, then an approximately fair coin is

flipped instead. The event that the first coin is heads will be denoted A, the

event that the second coin – whichever coin is used – is heads, B. Table 4.1

represents a linguistic probability measure that might reasonably be used to

model this scenario.

LP(X∩Y) Y = B Y = Bc

X = A 0.25χ 0.25χ

X = Ac [0.2,0.3]χ [0.2,0.3]χ

Table 4.1: The coins example that proves conditionalisations of linguistic probability

examples do not always exist.

Now consider the composite event, D, that both coins – whichever coin is used

second – show the same, be it heads or tails i.e.

D = ((A∩B)∪ (Ac∩Bc)) (4.16)

The linguistic probability of D may be computed as [0.45,0.55]χ, since

LP(D)⊕0.25χ = LP(D)⊕LP(Ac) ⊇ 1χ ⊖ [0.2,0.3]χ = [0.7,0.8]χ (4.17)
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LP(X∩Y) X = A X = Ac

Y = B [0.03,0.08]χ [0.06,0.14]χ

Y = Bc [0.16,0.27]χ [0.56,0.72]χ

Table 4.2: A fully-factorable linguistic probability measure

and

LP(D) ⊆ LP(A∩B)⊕LP(Ac∩Bc) = 0.25χ⊕ [0.2,0.3]χ = [0.45,0.55]χ (4.18)

This accords with intuition, since D’s probability is, roughly speaking, depen-

dent on the probability that the approximately fair coin yields heads. How-

ever, there can be no conditional linguistic probability measure with respect to

D that satisfies equation 4.15 since no fuzzy number multiplied by [0.45,0.55]χ

will yield 0.25χ.

But this example is also factorable, in the sense that conditioning on A yields a

consistent linguistic probability measure with

LP(A) = LP(Ac) = 0.5χ (4.19)

LPA(B) = LPA(Bc) = 0.5χ (4.20)

LPAc(B) = LPAc(B) = [0.4,0.6]χ (4.21)

The linguistic probability measure tabulates in Table 4.2 shows that there are

“non-trivial” fully-factorable measures.
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4.3 Linguistic random variables

As in classical probability theory random variables are often more useful than

events, although as we shall see, there is a simple connection between the two.

The notation used in this section will generally suggest the univariate case.

However, it should be noted that the results presented apply equally and im-

mediately to the multivariate case by considering the domains that are Carte-

sian products of other sets.

The definition of a linguistic analogue to a classical random variable is straight-

forward:

Definition 4.3.1 (Linguistic random variable). Given a linguistic probability

space (Ω,E ,LP), and a domain DX, a function X : Ω → DX is termed a linguistic

random variable on (Ω,E ,LP) if and only if for all x∈ Dx,

X−1(x) = {ω ∈ Ω : X(ω) = x} ∈ E (4.22)

Where DX is finite, X is termed a linguistic discrete random variable.

4.3.1 Linguistic discrete random variables

Definition 4.3.2 (Discrete linguistic random variable). Given a linguistic prob-

ability space (Ω,E ,LP), and a domain DX, a function X : Ω → DX is termed a

discrete linguistic random variable on (Ω,E ,LP) if and only if:

a) Image(X) = {X(ω) : ω ∈ Ω} is countable

b) For all x ∈ DX, {ω ∈ Ω : X(ω) = x} ∈ E



Chapter 4. Linguistic Probability Theory 63

Definition 4.3.3 (Mass function). The mass function of a discrete linguistic ran-

dom variable, X on (Ω,E ,LP) is the function, lpX : DX →R
F determined by

lpX(x) = LP({ω ∈ Ω : X(ω) = x}) (4.23)

By definition, a linguistic mass function satisfies

0χ 4 lpX(x) 4 1χ (4.24)

and

lpX(x) ⊆ 1χ ⊖ ( ◦
∑

x′ 6=x

lpX(x′)) (4.25)

for all x∈ DX. Note that b) also entails that 1χ ⊆ ◦
∑

x lpX(x) since for any x∈ DX,

1χ ⊆ 1χ ⊖ lpX(x)⊕ lpX(x) (4.26)

⊆ 1χ ⊖
(

1χ ⊖ ◦
∑

x′ 6=x

lpX(x′)
)

⊕ lpX(x) (4.27)

⊆ ◦
∑

x′
lpX(x′) (4.28)

Whilst these conditions are necessary they are also sufficient in the sense of the

following theorem.

Theorem 4.3.4 (Representation Theorem). If D = {di : i ∈ I} is a non-empty finite

set (indexed by I ) and {πi : i ∈ I} is a set of fuzzy numbers such that for all i ∈ I

0χ 4 πi 4 1χ (4.29)

and

πi ⊆ 1χ ⊖ ◦
∑

j 6=i

π j (4.30)
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then there exists a linguistic probability space, (Ω,E ,LP) and a discrete linguistic

random variable, X, on (Ω,E ,LP) with the mass function

lpX(d) =















πi if d = di for some i ∈ I

0χ otherwise

(4.31)

Proof. The proof proceeds by construction. Let Ω = D, E = P(Ω) and define

LP :E →R
F by

LP(A) = ( ◦
∑

i : di∈A

πi) ∩ (1χ ⊖ ◦
∑

i : di /∈A

πi) ∩ [0,1]χ (4.32)

By definition LP(Ω) = 1χ and LP(∅) = 0χ as required. Now, for any A∈E since

and 0χ 4 πi for all i ∈ I there is an x∈ [0,1] such that

µ ◦
P

i : di∈A πi
(x) = 1 and µ1χ⊖ ◦

P

i : di /∈A πi
(x) = 1 (4.33)

Hence LP(A) as defined is in [0χ,1χ]. Since S is finite it suffices to consider

disjoint A,B∈ E . By definition,

LP(A∪B) ⊆ ◦
∑

i : di∈A∪B

πi = ( ◦
∑

i : di∈A

πi)⊕ ( ◦
∑

i : di∈B

πi) ⊆ LP(A)⊕LP(B) (4.34)

Similarly, by definition,

1χ⊖LP(Ac) = 1χ ⊖{( ◦
∑

i : di∈Ac

πi)∩ (1χ⊖ ◦
∑

i : di /∈Ac

πi)∩ [0,1]χ} (4.35)

= (1χ ⊖ ◦
∑

i : di∈Ac

πi)∩ (1χ⊖1χ ⊕ ◦
∑

i : di /∈Ac

πi)∩ [0,1]χ (4.36)

= LP(A) (4.37)

Thus (Ω,E ,LP) is a linguistic probability space.
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Finally, define X : Ω → Ω as the identity i.e. such that X(ω) = ω. Now, given

d ∈ D, if d 6= di for all i ∈ I , X−1(s) = ∅ and hence lpX(d) = 0χ. Otherwise,

X−1(d) = {di} for some i ∈ I and since πi ⊆ 1χ ⊖ ◦
∑

j 6=i π j

lpX(s) = LP({di}) = πi

This theorem is important for practical applications of the theory as it allows

probabilistic modelling to dispense with measure theory almost all the time

and concentrate on random variables which are typically the entities of inter-

est. It is also an essential component in the proof that linguistic analogues for

Bayesian networks can be constructed.

Note that the full strength of condition 4.30 is only required to prove that the

constructed linguistic random variable exactly coincides with the relevant πi.

If it were replaced by the significantly weaker condition

1χ ⊆ ◦
∑

i∈I

πi (4.38)

then (ω,E ,LP) as constructed abovewould still be a linguistic probability space.

Thus 4.32 can also be seen as a procedure for correcting an improperly speci-

fied random variable.

4.3.2 Real-valued discrete linguistic random variables

A (fuzzy) real-valued linguistic random variable is simply a random variable

whose domain is the (fuzzy) real line. Where the variable is also discrete i.e.

having only a finite range, expectation can be calculated in the usual way.
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Definition 4.3.5 (Expectation). Given a (fuzzy) real-valued discrete linguistic

randomvariable X : Ω → DX on (Ω,E ,LP), the expectation of X,E(X) is defined

by

E(X) =















◦
∑

x∈DX
LP(X−1(x))⊗xχ if DX ⊂R

◦
∑

x∈DX
LP(X−1(x))⊗x if DX ⊂RF

(4.39)

Since the fuzzy numbers form a commutation semi-ring, this expectation shares

many properties with its classical counterpart. So, for example, expectation is

linear in the sense that for all α,β ∈RF

E(αX +βY) = α⊗E(X)⊕β⊗E(Y) (4.40)

4.3.3 Continuous linguistic random variables

As in the classical case, random variables are essentially integrable functions

e.g.

Definition 4.3.6 (Continuous linguistic random Variable). Given a linguistic

probability space (Ω,E ,LP), a map

X : Ω →R (4.41)

is termed a continuous linguistic random variable if and only if for all x∈R

{ω ∈ Ω : X(ω) ≤ x} ∈ E (4.42)

4.4 Summary

This chapter introduced the axiomatic characterisation of linguistic probability

theory. Following a brief discussion of these axioms which sought to ground
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them in a set of reasonable normative insights, some basic properties of lin-

guistic probability measures were demonstrated to wit: monotonicity and con-

tinuity. These fundamental properties pave the way for the following devel-

opments.

Next, the relationship with classical probabilities was examined. It was demon-

strated that the natural embedding of a classical probability measure is consis-

tent with the axioms of linguistic probability theory, and that conversely a lin-

guistic probability measure ranging over embedded real numbers corresponds

exactly to a classical probability measure.

After this, the issue of conditional probability was examined. The key result of

this section was that (unlike their classical counterparts) linguistic probability

measures are not necessarily “factorable” – put simply, given such a measure,

a decomposition into conditional and prior need not exist.

Finally, the theory was used to develop fuzzy analogues for random variables.

The discrete case was explored in some detail and a sketch of the approach to

continuous case was presented.

As explained in Chapter 2, these last two elements, conditionals and discrete

random variables are the essential constituents of a Bayesian graphical repre-

sentation. The following chapter explores this theoretical application in more

detail.



Chapter 5

Linguistic Bayesian Networks

This chapter develops an analogue to classical Bayesian networks. A set of

sufficient criteria for an annotated graph to represent a discrete linguistic joint

probability mass function are presented. This can be understood as showing

the soundness of the representation. The issue of representational complete-

ness is then discussed. No conclusion is presented on this point although it

is shown that the standard constructive proof strategy is not applicable in this

context. Finally, efficient inference procedures are examined. It is shown that

best-of-breed classical procedures may be utilized with little modification.

5.1 Representation

In order to prove that it is possible to specify a linguistic joint probability dis-

tribution in the form of a Bayesian network, it is sufficient to show that the

multiplying the conditional probability table at a node by its priors yields a

68
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joint distribution. The following Lemma and Theorem present this result for

discrete linguistic random variables. The Lemma is intuitively very obvious,

but rather fiddly.

Lemma5.1.1 (Partitioning). Given a Cartesian product of finite domains, D =
∏N

i=0Di ,

and functions, f : D f =
∏N

i=1Di → [0χ,1χ] and g : Dg = D0×
∏M

i=1Dσ(i) → [0χ,1χ],

where M ≥ 1 and σ is an injection σ : {1,2, . . . ,M}→ {1,2, . . . ,N} such that

a) f (x) ⊆ 1χ ⊖ ◦
∑

y∈D f : y6=x f (y) for all x∈ D f

b) g(x) ⊆ 1χ ⊖ ◦
∑

y∈Dg : y0 6=x0
g(y) for all x∈ Dg

then for all x = (x0,x1, . . .xN) ∈ D

f (x1,x2, . . . ,xN)g(x0,xσ(1),xσ(2), . . . ,xσ(M))

⊆ 1χ ⊖
(

◦
∑

y∈D : y6=x

f (y1,y2, . . . ,yN)g(y0,yσ(1),yσ(2), . . . ,yσ(M))
)

(5.1)
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Proof.

f (x1,x2, . . . ,xN)g(x0,xσ(1),xσ(2), . . . ,xσ(M))

⊆ f (x1,x2, . . . ,xN)
(

1χ ⊖ ◦
∑

y0 6=x0

g(y0,xσ(1),xσ(2), . . . ,xσ(M))
)

(5.2)

⊆ f (x1,x2, . . . ,xN)⊖ f (x1,x2, . . . ,xN) ◦
∑

y0 6=x0

g(y0,xσ(1),xσ(2), . . . ,xσ(M))
)

(5.3)

⊆ 1χ⊖ ◦
∑

yi 6=xi

f (y1,y2, . . . ,yN)⊖ f (x1,x2, . . . ,xN) ◦
∑

y0 6=x0

g(y0,xσ(1),xσ(2), . . . ,xσ(M))
)

(5.4)

⊆ 1χ⊖ ◦
∑

yi 6=xi

f (y1,y2, . . . ,yN) ◦
∑

y0

g(y0,yσ(1),yσ(2), . . . ,yσ(M))

⊖ f (x1,x2, . . . ,xN) ◦
∑

y0 6=x0

g(y0,xσ(1),xσ(2), . . . ,xσ(M))
)

(5.5)

⊆ 1χ⊖
(

◦
∑

y∈D : y6=x

f (y1,y2, . . . ,yN)g(y0,yσ(1),yσ(2), . . . ,yσ(M))
)

This Lemma shows that the mass functions of a set of conditional and prior

discrete linguistic variables (under certain reasonable conditions) can be com-

bined to form a joint distribution. The details of this are spelt out in the fol-

lowing Theorem.

Theorem 5.1.2 (Representation Theorem for linguistic Bayesian networks). Given

a graph, G = (V,Pa) with appropriate functions it the product function is suitable to

be the joint mass function of a set of linguistic discrete random variables.

Given functions, f1, f2, . . . , fn and gwith domainsD1,D2, . . . ,Dn andD∗ = D×
∏n

i=1Di

respectively, and the common range [0χ,1χ], such that for all i ∈ {1,2, . . . ,n},x =

(x,x1,x2, . . . ,xn) ∈ D∗,

a) fi(xi) ⊆ 1χ ⊖ ◦
∑

x′i 6=xi
fi(x′i)
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b) g(x) ⊆ 1χ ⊖ ◦
∑

x′ 6=xg(x′)

then there exist random variablesX,X1,X2, . . . ,Xn with respective domainsD,D1,D2, . . . ,Dn

such that for all i ∈ 1,2, . . . ,n

lpXi
(x) = fi(x) for all x∈ Di (5.6)

and for all x∈ D∗

lpX,X1,X2,...,Xn
(x) = g(x)

n
∏

i=1

fi(xi) (5.7)

Proof. The proof follows by induction on the size of the graph, from the pre-

ceding Lemma and 4.3.4.

In ordinary language, this theorem demonstrates that the product of appropri-

ate node functions is of the correct form to represent a linguistic joint probabil-

ity mass function.

5.2 Completeness

Theorem 2.4.7 demonstrated that every joint probability mass function can be

represented as a Bayesian network. This result was an almost trivial conse-

quence of Bayes’ Theorem. Given a joint probability mass function for N vari-

ables (X1,X2, . . . ,XN) it considered the sort of fully-connected graph displayed

in Figure 2.3. Each node was then identified with a random variable and asso-

ciated with the corresponding conditional probability mass function. By con-

struction this graphical model exactly represents the original joint probability

mass function.
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The considerations marshaled in Section 4.2, however show that the construc-

tive proof strategy cannot be used to prove the parallel result for linguistic

Bayesian networks. Aswas demonstrated, even trivial bivariate linguistic joint

distributions are not necessarily factorable.

5.3 Inference in linguistic Bayesian networks

As in the classical case both exact and inexact inference procedures are avail-

able. Section 2.4.3 showed that efficient exact inference algorithms for classical

Bayesian networks rely on re-arranging and eliminating terms from the sum

of products expression for the joint mass function. These optimizations rely on

properties of classical Bayesian networks. First, redundancy elimination meth-

ods such as Bayes’ Ball utilize the fact that screened sections of the network ef-

fectively sum to 1. Once redundant terms have been eliminated, the query sum

may be most efficiently calculated by rearranging the factors allowing summa-

tions to be “pushed in” as far as possible. These rearrangements require both

commutativity and distributivity.

Since linguistic probability mass functions share to a great extent these prop-

erties, the classical algorithms apply without modification, although there are

some differences in interpretation which require further elaboration.

First, since by definition LPA(A) = 1χ, redundancy elimination methods work

in exactly the same way. Indeed where redundancy elimination offers only

improved efficiency in classical networks, in linguistic Bayesian networks, it

also improves the “quality” of the resulting answer. The naive approach to
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computing a query would involve processing terms of the form

◦
∑

x∈DX

lpX(x) (5.8)

by summing the values of lpX. Where these are fuzzy the computed sum will

also be some fuzzy number subsuming 1χ. However it is evident that the value

must be exactly 1χ. Thus redundancy elimination in linguistic Bayesian net-

works doubles as a way of removing unnecessary uncertainty.

The rearrangement of terms, via the junction tree algorithm, also carries over to

linguistic Bayesian networks, albeit with one small caveat. As stated in Chap-

ter 2, the fuzzy reals whilst commutative are not distributive, but subdistribu-

tive. Thus whilst it is legitimate to permute the multiplicands, “pushing in”

the summations introduces additional uncertainty. In practice this means that

as in manual calculations the output of inference algorithms will not be exactly

the quantity required, but rather a value that subsuming this.

Since the basic arithmetic operations for fuzzy numbers have a greater algo-

rithmic complexity than their classical equivalents, inference techniques for

linguistic Bayesian networks are (weakly) less efficient than their classical coun-

terparts. However, following the observations in Section 2.2.8, depending on

the representation used this will be a linear relationship.

5.4 Summary

This chapter applied the theory of linguistic probabilities developed in Chap-

ter 4 to the construction of graphical probabilistic models analogous to Pearl’s
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Bayesian networks. It was shown that a graphical model under a certain set of

constraints could be used to represent linguistic joint probability distributions

but that it is not clear whether all linguistic joint probability distributions are

representable in this way.

Finally it was shown that the underlying algebraic properties of the model

allow the use of standard, efficient belief propagation and relevance determi-

nation algorithms.

The following chapter will utilise this theory in connection with a contempo-

rary application of Bayesian networks in forensic science.



Chapter 6

Case study: forensic statistics

Forensic statistics is a discipline that is mainly concerned with the experimen-

tal design of forensic examinations and the analysis of the obtained results. The

issues it studies include hypothesis formulation, deciding on minimal sample

sizes when studying populations of similar units of evidence and determining

the statistical significance of the outcome of tests. Recently, the discipline has

been branching out to the study of the statistical implications of forensic exam-

inations on defence and prosecution positions during crime investigation and

criminal court proceedings.

This chapter explains one application of classical Bayesian networks to forensic

statistics, namely the evaluation of the strength of support collected evidence

provides for a given crime scenario. An example is provided of such a network

and the calculations dictated by the protocol are performed. These results are

then contrasted with those obtained by using a similar, but more expressive

model utilizing linguistic probabilities.

75
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The material presented here was developed in conjunction with Jeroen Kep-

pens (then a researcher at the Joseph Bell Centre for Legal reasoning) and pre-

sented to a an audience of specialists (Halliwell et al., 2003) in 2003.

6.1 Bayesian networks in forensic statistics

The most high-profile forensic application of Bayesian reasoning was in the

1996 case of Crown versus Denis John Adams. Here a statistical expert wit-

ness explained Bayes’ theorem to a jury and invited them to use it as a basis

for assessing a moderately complex set of evidence. Although the jury deliv-

ered a guilty verdict, the case was appealed on the grounds that no alternative

method was provided for jurors who chose not to accept the mathematical

approach. Ultimately, the Court of Appeal upheld the conviction and gave

their opinion that ”To introduce Bayes’ Theorem, or any similar method, into

a criminal trial plunges the Jury into inappropriate and unnecessary realms of

theory and complexity, deflecting them from their proper task.” Further appeal

was precluded, but the form of the ruling has ensured that the use of explicit

Bayesian assessment in the courtroom remains controversial.

Nevertheless, Bayesian reasoning has firmly established itself within the crown

prosecution service. In Cook et al. (1998a), a method is proposed to assess the

impact of a certain piece of forensic evidence on a given case. This method is

the result of a significant research effort by the Forensic Science Service (FSS),

the largest provider of forensic science services in England and Wales. It in-

volves 1) formalising the respective claims of the prosecution and the defence

Cook et al. (1998b); Evett et al. (2000a), 2) computing the probability that the
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evidence is found given that the claim of the prosecution is true and the prob-

ability that the evidence is found given that the claim of the defence is true,

and 3) dividing the former probability by the latter to determine the likelihood

ratio Balding and Donnelly (1995):

LR=
P(E |Cp)

P(E |Cd)

where E,Cp,Cd respectively represent the evidence, the prosecution claim and

the defence claim, and P(E | C) is the probability that evidence E is found if

claim C is true.

The likelihood ratio is a numerical evaluation of the extent to which the evi-

dence supports the prosecution claim over the defence claim. It has two im-

portant applications. Firstly, the potential benefit associated with performing

forensic procedures (which are often expensive and resource intensive) may be

assessed in advance by examining the effect of their possible outcomes on the

likelihood ratio. Increasingly, police forces must purchase forensic services.

Likelihood ratio based calculations can support this difficult decision making

process. Secondly, the likelihood ratio can be used to justify the testimonies

of forensic experts during the court proceedings. To this end, a verbal scale

to help forensic experts interpret the LR is suggested by the FSS Evett et al.

(2000b). This is reproduced in Table 6.1 for reference.

6.1.1 Bayesian networks and likelihood ratio

The likelihood ratio method is, of course, crucially dependent upon a means

to compute the probabilities P(E |Cp) and P(E |Cd). Bayesian networks have
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LR Support of evidence to prosecution claim over defence claim

1 to 10 limited

10 to 100 moderate

100 to 1,000 moderately strong

1,000 to 10,000 strong

> 10,000 very strong

Table 6.1: Interpretation of the likelihood ratio.

Event Domain

qt quantity of transferred fragments {none,few,many}

qp quantity of persisted fragments {none,few,many}

ql quantity of lifted fragments {none,few,many}

tc type of contact {none,some}

ps proportion of fragments shed {none,small,large}

pl proportion of fragments lifted {some,most,all}

Table 6.2: Variables in the one-way transfer case.

emerged as a helpful technique in this context Aitken et al. (2003); Cook et al.

(1999); Dawid et al. (2002).

A Bayesian network is a directed graph whose nodes represent events. Causal

relationships between these events are, in turn, represented by arcs. Since

the network is patterned after these real world relations, the decision to use

a Bayesian network can guide the knowledge acquisition process.

An example may best illustrate this application of Bayesian networks. Con-
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tc qt qp

ps pl

ql

Figure 6.1: Bayesian network of a one-way transfer case.

sider the following scenario:

A burglar smashes the window of a shop, steals some money from the cash

registry and flees the scene of the crime. A bystander witnessed this event and

reports a description of the perpetrator to the police who arrest a man, match-

ing the description of the witness half an hour after the event. The suspect,

Mr. Blue, denies having been near the shop. However, ql glass fragments,

matching the type of glass of the shop’s window, are retrieved fromMr. Blue’s

clothes.

Figure 6.1 shows a Bayesian network that models the probabilistic relation-

ship between the retrieval of ql glass fragments from the garment of Mr. Blue

in the forensic laboratory and the type of contact, tc, between Mr. Blue and

the shop’s window. The number of glass fragments ql that are retrieved from

Mr. Blue’s clothes depends on the number of glass fragments that have per-

sisted in the clothes qp and on the effectiveness of the retrieval technique pl ,

where pl represents the proportion of glass fragments lifted from the garments

under examination. The number of glass fragments qp that have persisted in
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the clothes until the time of the examination, in turn, is dependent upon the

number of glass fragments qt that were transferred in the first place and the

proportion of fragments ps shed between the time of transfer and the time of

the examination. Finally, the number of transferred fragments qt depends on

the type of contact tc. The domains of these variables are reproduced in Table

6.2.

By Bayes’ Theorem the joint distribution of variables involved in a Bayesian

network is given by the product of the (conditional or prior) distributions at

each node. Hence, P(ql ∩ tc) may be found by marginalizing over the other

variables:

P(ql ∩ tc) =
∑

pl ,qp,qt ,ps

P(ql | qp, pl )P(pl)

P(qp | qt , ps)P(ps)P(qt | tc)P(tc)

which, by rearranging terms to minimise the number of arithmetic operations

required, equals

P(tc)
∑

pl

P(pl )
∑

qp

P(ql | qp, pl )

∑

qt

P(qt | tc)
∑

ps

P(qp | qt , ps)P(ps)

Suppose that the prosecution case is that the defendant has had somecontact

with the window in question and that a given forensic procedure has yielded

manymatching fragments. The probabilities required to evaluate the likelihood

ratio are provided in Tables 6.3, 6.4, 6.5 and 6.6. The relevant calculation is,

LR=
P(ql = many| tc = some)
P(ql = many| tc = none)

=
0.428586
0.038813

= 11.042. . .
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ps p(ps)

none 0.03

small 0.3

large 0.67

pl p(pl ]

none 0.06

few 0.29

many 0.65

Table 6.3: Classical prior probabilities p(ps) and p(pl).

tc p(qt = none| tc) p(qt = f ew| tc) p(qt = many| tc)

none 0.9 0.05 0.05

some 0.1 0.25 0.65

Table 6.4: Classical conditional probabilities p(qt | tc).

qt ps p(qp = none| qt , ps) p(qp = f ew| qt , ps] p(qp = many| qt, ps)

none none 1 0 0

small 1 0 0

large 1 0 0

few none 0 1 0

small 0.1 0.9 0

large 0.3 0.7 0

many none 0 0 1

small 0.05 0.1 0.85

large 0.07 0.48 0.45

Table 6.5: Classical conditional probabilities P(qp | qt , ps).
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qp pl LP(ql = none| qp, pl ) LP)ql = f ew| qp, pl ) LP(ql = many| qp, pl )

none some 1 0 0

most 1 0 0

all 1 0 0

few some 0.05 0.95 0

most 0.05 0.95 0

all 0.02 0.6 0.38

many some 0.08 0.46 0.46

most 0.2 0.2 0.6

all 0 0 1

Table 6.6: Classical conditional probabilities p(ql | qp, pl ).

Thus, according to Table 1, this item of forensic evidence provides moderate

support to the prosecution case.

6.2 Linguistic Bayesian networks for forensic statistics

This section details a proof-of-concept case study created in conjunction with

Jeroen Keppens (at the time a researcher at the Joseph Bell Centre for Legal

reasoning). This study together with a sketch of the underlying theory was

presented to an audience of specialists in the area of legal applications of arti-

ficial intelligence techniques at ICAIL03.
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6.2.1 ARBOR: a linguistic Bayesian network tool

Arbor is an extensible tool for creating and editing graph structures and per-

forming operations upon them that was written to provide a comfortable en-

vironment for experimenting with linguistic Bayesian networks.

Graph types (their topological constraints, node annotations and associated ac-

tions) are defined using a plugin architecture. It utilizes a plugin architecture

for defining graph types. The use of the high-level, object-oriented program-

ming language Python allows functionality to be abstracted at various levels

of granularity across the system and in a way that reflects the structure of the

underlying mathematics.

So, for example, directed acyclic graphs are simply a sub-class of a directed

graph type, adding an acyclicness constraint check. Similarly, the Linguistic

Bayesian network graph class directly inherits the (suitably abstracted) infer-

ence algorithm from a Bayesian network superclass – with comments the lin-

guistic Bayesian network graph type amounts to just 60 lines of code. Re-using

functionality in this way helps to ensure robustness of the system as well as

significantly reducing implementation time.

The system also makes use of other advanced language features offered by

Python. Functional programming styles are exensively employed in the infer-

ence algorithms to take advantage of lazy evaluation/implicit state and clo-

sures. The native serialization provided by the pickle module is also used to

provide save and restore functionality across hetrogenous graph types with no

additional code.
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Table 6.7: Linguistic prior probabilities lp(ps) and lp(pl )

ps lp(ps)

none nearly impossible

small quite unlikely

large quite likely

pl lp(pl)

none nearly impossible

few quite unlikely

many quite likely

Table 6.8: Linguistic conditional probabilities lp(qt | tc).

tc lp(qt = none| tc) lp(qt = f ew| tc) lp(qt = many| tc)

none nearly certain nearly impossible nearly impossible

some impossible quite unlikely quite likely

Finally the system enforces a clean separation of core logic and presentation

through the MVC (model-view-controller) paradigm. This is a useful engi-

neering strategy as it simplifies interactions between components, but also di-

rectly enables batch-mode operation. This enhances the reusability of core al-

gorithms and data-structures – so, for example, it would be relatively trivial to

embed a linguistic Bayesian network model in a “headless” server application.

6.2.2 Extended example: Glass transfer

Tables 6.7, 6.8, 6.9 and 6.10 present a linguistically specified version of the net-

work discussed in Section 2. The qualitative probability terms themselves are

in turn graphed in Figures 6.3 to 6.11. Computations are performed in exactly
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Figure 6.2: A screenshot of the ARBORextensible Bayesian network editor showing the

network used in the forensics case study.
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Figure 6.3: The linguistic probability labelled “Impossible”

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

Nearly impossible

Figure 6.4: The linguistic probability labelled “Nearly impossible”
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Figure 6.5: The linguistic probability labelled “Very unlikely”
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Figure 6.6: The linguistic probability labelled “Quite unlikely”
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Figure 6.7: The linguistic probability labelled “Even chance”

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

Quite likely

Figure 6.8: The linguistic probability labelled “Quite likely”
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Figure 6.9: The linguistic probability labelled “Very likely”
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Figure 6.10: The linguistic probability labelled “Nearly certain”
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Figure 6.11: The linguistic probability labelled “Certain”

Table 6.9: Linguistic conditional probabilities lp(qp | qt , ps).

qt ps lp(qp = none| qt , ps) lp(qp = f ew| qt , ps) lp(qp = many| qt , ps)

none none certain impossible impossible

small certain impossible impossible

large certain impossible impossible

few none impossible certain impossible

small very unlikely very likely impossible

large quite unlikely quite likely impossible

many none impossible impossible certain

small nearly impossible very unlikely very likely

large nearly impossible even chance even chance
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Table 6.10: Linguistic conditional probabilities lp(ql | qp, pl ).

qp pl lp(ql = none| qp, pl ) lp(ql = f ew| qp, pl ) lp(ql = many| qp, pl)

none some certain impossible impossible

most certain impossible impossible

all certain impossible impossible

few some nearly impossible nearly certain impossible

most nearly impossible nearly certain impossible

all nearly impossible very likely very unlikely

many some nearly impossible even chance even chance

most very unlikely very unlikely quite likely

all impossible impossible certain

the same sequence as in the classical case, but with fuzzy arithmetic opera-

tors and numbers. This yields fuzzy values for lp(ql = many| tc = some), lp(ql =

many| tc = none) and the likelihood ratio. These are presented in Figures 6.12

and 6.14 respectively. Note that the membership functions, as expected, sub-

sume their classical counterparts as calculated in Section 2.

The value calculated for lp(ql = many| tc = none) is particularly interesting.

Practical forensic applications typically use conservative (high) estimates for

P(E|Cd) (i.e. the denominator in the likelihood calculation) thereby biasing the

case in favour of the defence (Cook et al., 1999). Additionally, the probabili-

ties typically associated with the subsets of events modelling the case where

evidence originates not with the crime, but with some other source, are van-

ishingly small. Moreover, these probabilities are typically the most difficult
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to obtain experimentally. The use of linguistic probabilities to represent such

probabilities allows the uncertainty that prompts this conservatism to be ex-

plicitly included in the model.

The fuzzy value calculated for the likelihood ratio has an extremely broad

plateau (α-cut at 1), dramatically exhibiting the sensitivity of this statistic to

small perturbations in the subjective probabilities on which it is based. That

the set’s membership function is greater than zero in each of the Forensic Sci-

ence Service’s recommended interpretation classes that are reproduced in Ta-

ble 1 is, of course, partly a result of the rather “low-resolution” term set used

for convenience of presentation here. Nevertheless, to re-iterate the central ar-

gument of this paper, the effects of propagating uncertainties should not be

brushed aside. It is clear from the graph that the support provided by the evi-

dence is roughly speaking moderate to strong. Note that, given a fuzzification

of the likelihood ratio quantity space, it would be possible to automatically

generate this description. However, the newly acknowledged uncertainties in

the subjective probability estimates are certainly consistent with much more

limited support.

6.3 Summary

This chapter illustrated how linguistic Bayesian networks might be used in

a real-world setting. Classical Bayesian networks are already utilized by the

UK’s Forensic Science Service to calculate the evidential support for a given

criminal scenario. However, some of the prior and conditional probabilities

involved in these models are obtained “subjectively” through expert consulta-
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Figure 6.12: The computed linguistic probability of lp(ql = many| tc = some)
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Figure 6.13: The computed lingustic probability of lp(ql = many| tc = none).
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Figure 6.14: The computed fuzzy likelihood ratio plotted on a logarithmic scale.

tion. This is then an ideal application for linguistic probabilities.

The increased expressivity of linguistic probabilities allows second order un-

certainty to be represented intuitively as is surely appropriate where probabil-

ities cannot be determined experimentally for practical or economic reasons.

That the likelihood ratio calculated above spans the entire range considered

by FSS protocols suggests that the greater expressivity provided by linguistic

probabilities would have important consequences for decision making within

criminal prosecutions. Although the probabilistic relationship between factors

in the scenario considered is not sufficiently determinate to allow a definitive

view on its likelihood to be formed, it would be misleading to suppress this

uncertainty.



Chapter 7

Conclusion

This chapter begins with a recapitulation of the major results presented in the

foregoing text. This is followed by a discussion of some of the limitations of

the present work together with some suggestions as to how these might be

addressed in future.

7.1 Summary

Chapters 1 was primarily concerned with establishing the context and motiva-

tion for this work. A number of studies were cited each suggesting that fuzzy

numbers might be a more suitable representation for subjective probability es-

timates than classical point probabilities. Taking this as read, the central re-

search question was stated: what form should a theory of fuzzy probabilities

take?

Chapter 2 sought to establish the philosophical and technical background un-

95
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derlying the work as a whole. Although most of the material there is well es-

tablished, some of the observations about fuzzy numbers and arithmetic have

not been widely recognised. Furthermore some notational conventions, es-

pecially those concerned with alphacuts, fuzzy numbers and fuzzy intervals

which have not yet found wide acceptance were introduced for the sake of

clarity.

Building on this foundation Chapter 3 presented a brisk summary of previous

work on hybridizing probability theory and fuzzy logic. There have been a

reasonable number of assays in this general direction most of which have been

rather tentative or positional in character. In the context of the present work

Chapter 3’s principle contribution was to introduce and distinguish between

the two most widely cited attempts to provide a theory of “fuzzy probabili-

ties”. It was shown that, though intuitively appealing both Zadeh and Jain

and Agogino’s theories exhibit serious technical problems that render them

incapable of expressing non-trivial fuzzy probability measures.

In response to these criticisms, Chapter 4 developed the core contribution of

this thesis – the theory of linguistic probabilities. Unlike the somewhat ad

hoc approach taken by earlier researchers, linguistic probability theory was

explicitly patterned after the standard measure-theoretic axioms of contempo-

rary probability theory. It was shown that linguistic probability measures, like

their classical counterparts, are monotonic and continuous. Analogues for the

classical concepts of conditional probability, independence and discrete and

continuous random variables were introduced and discussed.

Chapter 5 developed the theory into a computational application by show-
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ing how linguistic probabilities might be used in conjunction with a Bayesian-

network-like graphical knowledge representation. It was shown that the repre-

sentational scheme is consistent in the sense that networks with an identified

set of properties do indeed represent joint linguistic probability mass func-

tions. The issue of representational completeness was also examined and it

was shown that the classical constructive proof strategy is invalid in this con-

text.

In order to illustrate how such linguistic Bayesian networks might be used,

Chapter 6 introduced the application area of forensic statistics and presented

a simple case-study contrasting the fuzzy and the classical approaches. Whilst

tentative, the results of this comparison indicate the potential significance of

adopting the proposed representational scheme as small second-order uncer-

tainties in prior and conditional probability estimates can have an extremely

significant effect on established decision making protocols.

7.2 Discussion

The core theory of linguistic probabilities developed in Chapter 4 provides

a much more robust foundation for further investigation of “fuzzy probabil-

ities”. The relative ease with which sophisticated concepts such as random

variables and expectation were developed illustrates the advantages of adopt-

ing a principled, measure-theoretic approach over the earlier statistical (Zadeh,

1984) and mass-function-based (Jain and Agogino, 1990) analyses.

Furthermore, the demonstration that linguistic probabilities may be used to
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construct graphical knowledge representations shows that this is not merely

a dry, mathematical theory, but a practical calculus capable of efficient imple-

mentation.

Finally, the utility of the approach as whole has not been demonstrated here

(although studies such as Budescu and Wallsten (1985) lend strong support)

however the case-study in forensic statistics was well-received by an expert

audience.

7.3 Future work

Nevertheless, the present work has only scratched the surface of each of these

three aspects. The following sections examine some of these limitations and

sketches a programme of work that might lead to a fuller picture.

7.3.1 Interpretation

Hitherto the interpretation of linguistic probabilities – what they mean – has

been treated as unproblematic. The intent has been to suggest a subjectivist

approach consistent with the predominant understanding of classical proba-

bility theory. However it is possible to see the beginnings of connections with

alternative semantics.

One extremely natural approach is to align linguistic probabilities with second-

order classical probabilities. For the purposes of easy exposition, suppose that

A and B are disjoint events (so A∩B = ∅) such as a die roll’s resulting in a 1
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Figure 7.1: A graph of the density distribution of pA.

or 6 respectively. Suppose further that since the probabilities are not known

precisely but are instead given by random variables, pA and pB.

This model is a very simple second-order probability distribution i.e. we have

probability density functions, fpA and fpB. Ontologically this is usually thought

of as corresponding with a probability distribution over all possible probability

distributions with respect to some (fixed) sigma algebra. Consider the uniform

case where pA and pB are evenly distributed between a1 and a2, and b1 and b2

respectively. For notational convenience define,

a = a2−a1 and b = b2−b1 (7.1)

Then we have the second-order density functions,

fpA(x) =















1
a if x∈ [a1,a2]

0 otherwise

and fpB(x) =















1
b if x∈ [b1,b2]

0 otherwise

In order to picture of what the various functions involved in the following look

like it is necessary to plug in a set of values. Although what follows is perfectly
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general the visualisations will use a1 = 0.1, a2 = 0.3, b1 = 0.1 and b2 = 0.5. This

density function is graphed in Figure 7.1.

Now consider the confidence intervals this generates. First the expected value

of pA may be calculated as

mA = E(pA) =

∫ 1

0
x fpA(x)dx=

∫ a2

a1

x
a

dx=
a1 +a2

2
(7.2)

Next, consider regions either side of this mean. Given 0≤ δ ≤ a2−a1
2 ,

P(pA ∈ [mA−δ,mA +δ]) =
∫ mA+δ

mA−δ fpA(x)dx

= mA+δ−mA+δ
a

= 2δ
a (7.3)

This equation may be solved to determine the function dA such that

P(pA ∈ [mA−δA(α),mA+δA(α)]) = 1−α (7.4)

This may be calculated as

δA(α) =
a(1−α)

2
(7.5)

A similar calculation can be made for C = A∪B. Since A and B are exclusive

events we know that the probability of C is just the sum of their probabilities

i.e. pc = pa+ pb.

Now assuming that the second-order priors are independent, that a2 +b2 ≤ 1,

and without loss of generality that that a≤ b (if not then we can ”swap” A and

B. This final condition introduces an element of asymmetry which will persist
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through the following calculations that would otherwise be surprising. This

immediately implies that a2+b1 ≤ a1 +b2.

It is then possible to derive the following expression for the convolution,

fC(x) =

∫ x

0
fpA,pB(t,x− t)dt

=































































0 x < a1+b1

x−a1−b1
ab a1 +b1 ≤ x < a2+b1

a2−a1
ab a2 +b1 ≤ x < a1+b2

a2+b2−x
ab a1 +b2 ≤ x < a2+b2

0 a2 +b2 ≤ x

(7.6)

As a sanity check one can verify that this is indeed a density function (i.e.
∫ 1

0 fC(x)dx = 1). It is graphed in Figure 7.2. Now it is possible to calculate

the expected value and confidence intervals. By symmetry (or calculation)

mC = E(pC) = mA+mB as expected.

Now the confidence interval equation for pC can be computed as,

P(pC ∈ [mC−δ,mC +δ]) =































2δ
b if 0≤ δ ≤ b−a

2

δ(a+b−δ)− 1
4(b−a)2

ab if b−a
2 < δ ≤ a+b

2

1 otherwise

(7.7)

It then remains to analyse the relationship between δ and α i.e. find the func-

tion δC such that

P(PC ∈ [mC−δC(α),mC +δC(α)]) = 1−α
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a1

a1+b1
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a2+b1

a2+b2

a1+b2
b2

a2

pB

pA

Figure 7.2: Diagram of the joint distribution fpA,pB showing the various regions used in

the case analysis of its density function and confidence intervals.

This can be calculated as,

δC(α) =















b(1−α)
2 if α > a

b

a+b
2 −

√
αab otherwise

(7.8)

The delta function ”predicted” by linguistic probability theory is (1−α)(a+b)
2 .

It is relatively straightforward to show that this dominates δC. The (slightly)

difficult case is where α ≤ a
b. Note that,

αab = αa
b

(b+b)2

4

≥ α2 (b+b)2

4 since α < a
b

≥ α2 (a+b)2

4 since a < b

Hence,

α(a+b)

2
≤

√
αab
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Figure 7.3: The computed confidence intervals for the second-order probability pC and

the corresponding linguistic probability.
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and so,

(1−α)(a+b)

2
≥ a+b

2
−
√

αab= δC(α)

as required.

So for this rather simple example, linguistic probabilities seem at least con-

sistent with an interpretation based on second-order probabilities and their

confidence intervals. The general case has, however, proven less amenable to

this style of analysis. But that a proof has not yet been found, does not entail

no proof exists. The general idea of linguistic probabilities as an an indepen-

dence agnostic approach to using second-order models remains an attractive

goal and interesting prospect for future research.

Another line of investigation that was inconclusively pursued as a possible

basis for the interpretation of linguistic probabilities was their connection with

rough-sets. Rough set theory is an extension of classical set theory that takes as

its “atoms” pairs of classical sets, representing, so to speak, amost conservative

and most liberal estimate of a concept’s extension given a quantized reference

space.

The intuition behind this connection is that event spaces may be thought of as

just such a quantisation. Now given a probability measure (Ω,E ,P) rough set

theory gives us a very natural means of representing the probability of a set, A

of outcomes that is not in the set of events. So the lower approximation would

be

sup{P(E) : E ∈ E ∧E ⊆ A} (7.9)

and the upper

inf{P(E) : E ∈ E ∧A⊆ E} (7.10)
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So rough-sets naturally generate interval-valued probabilities, but how might

this link with fuzzy-valued probabilities? One natural possibility would be to

examine a mapping from alpha values to sub-algebras of a given event space.

In principle such a mapping seems, formally at least, consistent with the calcu-

lus of linguistic probabilities. However, fuzzy truth values are not obviously

alignedwith differing resolutions, so this approachmight raise more questions

than it promises to answer.

7.3.2 Evaluation as a method for knowledge engineering

Although the idea of using linguistic probabilities to capture expert knowl-

edge has been strongly endorsed by the studies cited in Chapter 1, it would

be helpful to examine to what extent linguistic Bayesian networks are a useful

technique in this area.

Ideally one would collect two groups of experts in a particular domain and

invite them to create networks modelling a particular scenario. One group

would utilize conventional Bayesian networks and the other a linguistic sys-

tem. In order to reduce the scope of the experiment and facilitate interpretation

of the results, the topology might be fixed in advance.

It would then be possible to examine quantitative properties of the knowledge

elicitation process, such as how long it took. This is often used to evaluate such

processes (Menzies and van Harmelen, 1999).

In evaluating the resulting models themselves, several metrics might be con-

sidered. First, since they generalize the classical case any use of the additional
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expressivity allowed by linguistic Bayesian networks could be construed as

immediate confirmation that this expressivity is welcome.

Next, it would be interesting to contrast the output of the models with histor-

ical decisions. This would require a corpus of internal FSS records discussing

cases that fit the pre-agreed modelling scenario. However, the finding an ap-

propriate scenario and adequately addressing the ethical and legal issues sur-

rounding the creation and utilisation of such a corpus would require substan-

tial effort.

Obviously the use of different design tools would further complicate the eval-

uation of these results. ARBOR’s ability to edit both classical and linguistic

Bayesian networks would however substantially mitigate this.

Nevertheless, it remains difficult to quantitatively evaluate knowledge engi-

neering techniques. Human factors, priming effects, and the absence of a “cor-

rect” target output are amongst the many problems in creating a rigorous em-

pirical study. For these reasons a qualitative approachwould likely provemore

illuminating.

So, participants in the proposed study would be asked to fill out a question-

naire enquiring about their experience of formalising their expert knowledge

using the two representational schemes. The questions would focus as much

as possible on their “comfort” with the resulting model, although the precise

framing would benefit from collaboration with an expert in human-computer

interaction.

Although much work remains to be done before linguistic Bayesian networks

can be broadly accepted as a knowledge engineering technique, the promise of
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vastly enhanced expressivity at an affordable computational cost should not be

ignored.
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Róbert Fullér and Tibor Keresztfalvi. Generalization of Nguyen’s theorem.

Fuzzy Sets and Systems, 41:371–374, 1990.

Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.

MIT Press, Cambridge, Massachusetts, 1988.

T Gardner-Medwin. What probability should a jury address? Significance, 2

(1), 2005.

Micael R Garey and David S Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, 1979.

Ronald E Giachetti and Robert E Young. A parametric representation of fuzzy

numbers and their arithmetic operators. Fuzzy Sets and Systems: Special Issue

on Fuzzy Arithmetic, 1998.

M A Gil and M R Casals. An operative extension of the likelihood ratio test

from fuzzy data. Stat. Papers, 29:191–203, 1988.



Bibliography 112

M A Gil, N Corral, and P Gil. The minimum accuracy estimates in χ2 tests

for goodness of fit with fuzzy observations. Journal of Statistical Planning and

Inference, 19:95–115, 1988.

M A Gil, N Corral, and M R Casals. The likelihood ratio test for goodness of

fit with fuzzy experimental observations. IMSC, 19:771–779, 1989.

Piotr J Gmytrasiewics and Edmund H Durfee. A rigorous, operational for-

malization of recursive modelling. In Proceedings of the First International

Conference on Multi-Agent Systems, pages 125–132, 1995.
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